激光与光电子学进展, 2020, 57 (14): 141021, 网络出版: 2020-07-28   

基于多分支全卷积神经网络的低照度图像增强 下载: 958次

Low-Light Image Enhancement Based on Multi-Branch All Convolutional Neural Network
作者单位
上海海洋大学信息学院, 上海 201306
引用该论文

吴若有, 王德兴, 袁红春, 宫鹏, 陈冠奇, 王丹. 基于多分支全卷积神经网络的低照度图像增强[J]. 激光与光电子学进展, 2020, 57(14): 141021.

Ruoyou Wu, Dexing Wang, Hongchun Yuan, Peng Gong, Guanqi Chen, Dan Wang. Low-Light Image Enhancement Based on Multi-Branch All Convolutional Neural Network[J]. Laser & Optoelectronics Progress, 2020, 57(14): 141021.

参考文献

[1] YangJ, Jiang XW, Pan CH, et al. Enhancement of low light level images with coupled dictionary learning[C]∥2016 23rd International Conference on Pattern Recognition (ICPR), December 4-8, 2016, Cancun. New York: IEEE, 2016: 751- 756.

[2] Chang Y C, Chang C M. A simple histogram modification scheme for contrast enhancement[J]. IEEE Transactions on Consumer Electronics, 2010, 56(2): 737-742.

[3] 刘玉婷, 陈峥, 付占方, . 基于, 等. CLAHE 的红外图像增强算法[J]. 激光与红外, 2016, 46(10): 1290-1294.

    Liu Y T, Chen Z, Fu Z F, et al. Infrared image enhancement algorithm based on CLAHE[J]. Laser & Infrared, 2016, 46(10): 1290-1294.

[4] 胡窦明, 赵海生, 李云川, 等. 一种基于同态滤波的红外图像增强新方法[J]. 红外技术, 2012, 34(4): 224-228.

    Hu D M, Zhao H S, Li Y C, et al. A new approach to infrared image enhancement based on homomorphic filter[J]. Infrared Technology, 2012, 34(4): 224-228.

[5] Land E H. The retinex theory of color vision[J]. Scientific American, 1977, 237(6): 108-128.

[6] Jobson D J, Rahman Z, Woodell G A. Properties and performance of a center/surround retinex[J]. IEEE Transactions on Image Processing, 1997, 6(3): 451-462.

[7] RahmanZ, Jobson DJ, Woodell GA. Multi-scale retinex for color image enhancement[C]∥Proceedings of 3rd IEEE International Conference on Image Processing, September 19-19, 1996, Lausanne, Switzerland. New York: IEEE, 1996: 1003- 1006.

[8] ParthasarathyS, SankaranP. An automated multi scale Retinex with color restoration for image enhancement[C]∥2012 National Conference on Communications(NCC). February 3-5, 2012, Kharagpur, India, New York: IEEE, 2012: 1- 5.

[9] Zhang S, Wang T, Dong J Y, et al. Underwater image enhancement via extended multi-scale Retinex[J]. Neurocomputing, 2017, 245: 1-9.

[10] Guo X J, Li Y, Ling H B. LIME: low-light image enhancement via illumination map estimation[J]. IEEE Transactions on Image Processing, 2017, 26(2): 982-993.

[11] 李庆忠, 刘清. 基于小波变换的低照度图像自适应增强算法[J]. 中国激光, 2015, 42(2): 0209001.

    Li Q Z, Liu Q. Adaptive enhancement algorithm for low illumination images based on wavelet transform[J]. Chinese Journal of Lasers, 2015, 42(2): 0209001.

[12] DongX, WangG, PangY, et al. Fast efficient algorithm for enhancement of low lighting video[C]∥2011 IEEE International Conference on Multimedia and Expo, July 11-15, 2011, Barcelona, Spain. New York: IEEE, 2011: 1- 6.

[13] Khan S, Islam N, Jan Z, et al. A novel deep learning based framework for the detection and classification of breast cancer using transfer learning[J]. Pattern Recognition Letters, 2019, 125: 1-6.

[14] Lin G H, Zhang Y M, Xu G, et al. Smoke detection on video sequences using 3D convolutional neural networks[J]. Fire Technology, 2019, 55(5): 1827-1847.

[15] Muhammad K, Ahmad J, Mehmood I, et al. Convolutional neural networks based fire detection in surveillance videos[J]. IEEE Access, 2018, 6: 18174-18183.

[16] TaoL, ZhuC, XiangG, et al. LLCNN: a convolutional neural network for low-light image enhancement[C]∥IEEE Visual Communication and Image Processing(VCIP), December 10-13, 2017, New York: IEEE, 2017: 1- 4.

[17] 马红强, 马时平, 许悦雷, 等. 基于深度卷积神经网络的低照度图像增强[J]. 光学学报, 2019, 39(2): 0210004.

    Ma H Q, Ma S P, Xu Y L, et al. Low illumination image enhancement based on deep convolutional neural network[J]. Acta Optica Sinica, 2019, 39(2): 0210004.

[18] Springenberg JT, DosovitskiyA, BroxT, et al. ( 2015-04-13)[2019-10-15]. https:∥arxiv.org/abs/1412. 6806.

[19] WooS, ParkJ, Lee JY, et al.CBAM: convolutional block attention module[M] ∥Computer Vision-ECCV 2018. Cham: Springer International Publishing, 2018: 3- 19.

[20] LongJ, ShelhamerE, DarrellT. Fully convolutional networks for semantic segmentation[C]∥2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 7-12, 2015, Boston, MA, USA. New York: IEEE, 2015: 3431- 3340.

[21] NohH, HongS, HanB. Learning deconvolution network for semantic segmentation[C]∥2015 IEEE International Conference on Computer Vision (ICCV), December 7-13, 2015, Santiago, Chile. New York: IEEE, 2015: 1520- 1528.

[22] HuJ, ShenL, SunG. Squeeze-and-excitation networks[C]∥2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, June 18-23, 2018, Salt Lake City, UT. New York: IEEE, 2018: 7132- 7141.

[23] Wang Z, Bovik A C, Sheikh H R, et al. Image quality assessment: from error visibility to structural similarity[J]. IEEE Transactions on Image Processing, 2004, 13(4): 600-612.

[24] Lin TY, MaireM, BelongieS, et al.Microsoft COCO: common objects in context[M] ∥Computer Vision-ECCV 2014. Cham: Springer International Publishing, 2014: 740- 755.

[25] He KM, Zhang XY, Ren SQ, et al. Delving deep into rectifiers: surpassing human-level performance on ImageNet classification[C]∥2015 IEEE International Conference on Computer Vision (ICCV), December 7-13, 2015, Santiago, Chile. New York: IEEE, 2015: 1026- 1034.

[26] SrivastavaN, HintonG, KrizhevskyA, et al. ( 2014-11-28)[2019-10-15]. https:∥users.ics.aalto.fi/perellm1/thesis/summaries_html/node107.html.

[27] IoffeS, Szegedy C. Batch normalization: accelerating deep network training by reducing internal covariate shift[EB/OL]. ( 2015-02-11)[2019-10-15]. https:∥arxiv.org/abs/1502.03167v1.

[28] Kingma DP, Ba J. Adam: a method for stochastic optimization[EB/OL]. ( 2014-12-22)[2019-10-15]. https:∥arxiv.org/abs/1412. 6980.

[29] ZhangM, LucasJ, HintonG, et al., 1 stepback[EB/OL]. ( 2019-12-03)[2019-10-15]. https:∥arxiv.org/abs/1907. 08610.

[30] Ying ZQ, LiG, Gao W. A bio-inspired multi-exposure fusion framework for low-light image enhancement[EB/OL]. ( 2017-11-02)[2019-10-15]. https:∥arxiv.org/abs/1711. 00591.

[31] Sheikh H R, Sabir M F, Bovik A C. A statistical evaluation of recent full reference image quality assessment algorithms[J]. IEEE Transactions on Image Processing, 2006, 15(11): 3440-3451.

[32] WangZ, Simoncelli EP, Bovik AC. Multiscale structural similarity for image quality assessment[C]∥The Thirty-Seventh Asilomar Conference on Signals, Systems & Computers, November 9-12, 2003, Pacific Grove, CA, USA. New York: IEEE, 2003: 1398- 1402.

[33] FurhtB, MarquesO. Handbook of video databases: design and applications[M]. Boca Raton: CRC Press, Inc., 2003: 1041- 1078.

[34] Sheikh H R, Bovik A C. Image information and visual quality[J]. IEEE Transactions on Image Processing, 2006, 15(2): 430-444.

[35] LeeC, LeeC, Kim CS. Contrast enhancement based on layered difference representation[C]∥2012 19th IEEE International Conference on Image Processing, September 30-October 3, 2012, Orlando, FL, USA. New York: IEEE, 2012: 965- 968.

[36] Ma K D, Zeng K, Wang Z. Perceptual quality assessment for multi-exposure image fusion[J]. IEEE Transactions on Image Processing, 2015, 24(11): 3345-3356.

[37] 谢小甫, 周进, 吴钦章. 一种针对图像模糊的无参考质量评价指标[J]. 计算机应用, 2010, 30(4): 921-924.

    Xie X F, Zhou J, Wu Q Z. No-reference quality index for image blur[J]. Journal of Computer Applications, 2010, 30(4): 921-924.

[38] Mittal A, Soundararajan R, Bovik A C. Making a “completely blind” image quality analyzer[J]. IEEE Signal Processing Letters, 2012, 20(3): 209-212.

吴若有, 王德兴, 袁红春, 宫鹏, 陈冠奇, 王丹. 基于多分支全卷积神经网络的低照度图像增强[J]. 激光与光电子学进展, 2020, 57(14): 141021. Ruoyou Wu, Dexing Wang, Hongchun Yuan, Peng Gong, Guanqi Chen, Dan Wang. Low-Light Image Enhancement Based on Multi-Branch All Convolutional Neural Network[J]. Laser & Optoelectronics Progress, 2020, 57(14): 141021.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!