Journal of Innovative Optical Health Sciences, 2017, 10 (3): 1650054, Published Online: Dec. 27, 2018  

Comparative study on identification of healthy and osteoarthritic articular cartilages by fourier transform infrared imaging and chemometrics methods

Author Affiliations
Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, 29 Yudao St, Nanjing, 210016 Jiangsu, P.R. China
Abstract
Two discriminant methods, partial least squares-discriminant analysis (PLS-DA) and Fisher's discriminant analysis (FDA), were combined with Fourier transform infrared imaging (FTIRI) to differentiate healthy and osteoarthritic articular cartilage in a canine model. Osteoarthritic cartilage had been developed for up to two years after the anterior cruciate ligament (ACL) transection in one knee. Cartilage specimens were sectioned into 10 μm thickness for FTIRI. A PLS-DA model was developed after spectral pre-processing. All IR spectra extracted from FTIR images were calculated by PLS-DA with the discriminant accuracy of 90%. Prior to FDA, principal component analysis (PCA) was performed to decompose the IR spectral matrix into informative principal component matrices. Based on the di?erent discriminant mechanism, the discriminant accuracy (96%) of PCA-FDA with high convenience was higher than that of PLSDA. No healthy cartilage sample was mis-assigned by these two methods. The above mentioned suggested that both integrated technologies of FTIRI-PLS-DA and, especially, FTIRI-PCA-FDA could become a promising tool for the discrimination of healthy and osteoarthritic cartilage specimen as well as the diagnosis of cartilage lesion at microscopic level. The results of the study would be helpful for better understanding the pathology of osteoarthritics.
References

[1] A. K. Williamson, A. C. Chen, R. L. Sah , “Compressive properties and function-composition relationships of developing bovine articular cartilage,” J. Orthop. Res. 19, 1113–1121 (2001).

[2] W. Wilson, J. M. Huyghe, C. C. van Donkelaar , “Depth-dependent Compressive Equilibrium Properties of Articular Cartilage Explained by its Composition,” Biomech. Model. Mechanobiol. 6, 43–53 (2007).

[3] N. Ramakrishnan, Y. Xia, A. Bidthanapally, M. Lu , “Determination of zonal boundaries in articular cartilage using infrared dichroism,” Appl. Spectrosc. 61, 1404–1409 (2007).

[4] J. I. Lee, Y. Xia , “Quantitative zonal differentiation of articular cartilage by microscopic magnetic resonance imaging, polarized light microscopy and Fourier-transform infrared imaging,” Microsc. Res. Tech. 76, 625–632 (2013).

[5] X. H. Bi, Y. Xia, M. P. Bostrom, N. P. Camacho , “Fourier transform infrared imaging spectroscopy investigations in the pathogenesis and repair of cartilage,” Biochim. Biophys. Acta 1758, 934–941 (2006).

[6] J. H. Yin, Y. Xia, M. Lu , “Concentration profiles of collagen and proteoglycan in articular cartilage by Fourier transform infrared imaging and principal component regression,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 88, 90–96 (2012).

[7] Y. Xia, N. Ramakrishnan, A. Bidthanapally , “The depth-dependent anisotropy of articular cartilage by Fourier-transform infrared imaging (FTIRI),” Osteoarthr. Cartilage 15, 780–788 (2007).

[8] L. Rieppo, J. Rieppo, J. S. Jurvelin, S. Saarakkala , “Fourier Transform Infrared Spectroscopic Imaging and Multivariate Regression for Prediction of Proteoglycan Content of Articular Cartilage,” PLoS One 7, e32344 (2012).

[9] Z. H. Mao, X. X. Zhang, Y. C. Wu, J. H. Yin, Y. Xia , “Fourier Transform Infrared Microscopic Imaging and Fisher Discriminant Analysis for Identification of Healthy and Degenerated Articular Cartilage,” Chin. J. Anal. Chem. 43, 518–522 (2015).

[10] A. D. Ghanate, S. Kothiwale, S. P. Singh, D. Bertrand, C. M. Krishna , “Comparative evaluation of spectroscopic models using different multivariate statistical tools in a multicancer scenario,” J. Biomed. Opt. 16, 025003 (2011).

[11] K. H. Wong, V. Razmovski-Naumovski, K. M. Li, G. Q. Li, K. Chan , “Differentiation of Pueraria lobata and Pueraria thomsonii using partial least square discriminant analysis (PLS-DA),” J. Pharm. Biomed. Anal. 84, 5–13 (2013).

[12] R. G. Brereton , “Introduction to multivariate calibration in analytical chemistry,” Analyst 125, 2125–2154 (2000).

[13] M. P. O’Brien, M. Penmatsa, U. Palukuru, P. West, X. Yang, M. P. G. Bostrom, T. Freeman, N. Pleshko , “Monitoring the progression of spontaneous articular cartilage healing with infrared spectroscopy,” Cartilage 6, 174–184 (2015).

[14] H. C. Leo, L. R. Evan, D. B. Richard , “Fault diagnosis in chemical processes using Fisher discriminant analysis, discriminant partial least squares, and principal component analysis,” Chemometr. Intell. Lab. 50, 243–252 (2000).

[15] E. Ostrovsky, U. Zelig, I. Gusakova, S. Ariad, S. Mordechai, I. Nisky, J. Kapilushnik , “Detection of Cancer Using Advanced Computerized Analysis of Infrared Spectra of Peripheral Blood,” IEEE Trans. Biomed. Eng. 60, 343–352 (2013).

[16] D. Liu, X. J. Sun, C. Zhang, S. Y. Zhang, J. B. Zheng, R. Gurung, J. K. Du, J. S. Shi, Y. Z. Xu, Y. F. Zhang, J. G. Wu , “Evaluation of FTIR spectroscopy as diagnostic tool for colorectal cancer using spectral analysis,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 122, 288–294 (2014).

[17] X. X. Zhang, Z. H. Mao, J. H. Yin, Y. Xia , “Determination of collagen and proteoglycan concentration in osteoarthritic and healthy articular cartilage by Fourier transform infrared imaging and partial least square,” Vib. Spectrosc. 78, 49–53 (2015).

[18] X. H. Bi, Y. Xia, M.P. G. Bostrom, D. Bartusik, S. Ramaswamy, K. W. Fishbein, R. G. Spencer, N. P. Camacho , “Fourier transform infrared imaging and MR microscopy studies detect compositional and structural changes in cartilage in a rabbit model of osteoarthritis,” Anal. Bioanal. Chem. 387, 1601–1612 (2007).

[19] S. L. Myers, K. D. Brandt, B. L. O’Connor, D. M. Visco, M. E. Albrecht . “Synovitis and osteoarthritic changes in canine articular cartilage after anterior cruciate ligament transection. Effect of surgical hemostasis,” Arthritis Rheum. 33, 1406–1415 (1990).

[20] J. H. Lee, F. Badar, BScE, J. Matyas, Y. Xia, “Detecting the Sub-tissue Zonal Changes in Glycosaminoglycan (GAG) Contents between Healthy and Early Osteoarthritic Tibial Cartilages by Non-destructive Imaging,” http://www.ors.org/Transactions/60/0373.pdf.

[21] X. X. Zhang, J. H. Yin, Z. H. Mao, Y. Xia , “Discrimination of healthy and osteoarthritic articular cartilages by Fourier transform infrared imaging and partial least squares-discriminant analysis,” J. Biomed. Opt. 20, 060501 (2015).

[22] J. A. Westerhuis, H. C. J. Hoefsloot, S. Smit, D. J. Vis, A. K. Smilde, E. J. J. van Velzen, J.P. M. van Duijnhoven, F. A. van Dorsten , “Assessment of PLSDA cross validation,” Metabolomics 4, 81–89 (2008).

[23] P. Aberg, P. Geladi, I. Nicander, J. Hansson, U. Holmgren, S. Ollmar , “Non-invasive and microinvasive electrical impedance spectra of skin cancer-a comparison between two techniques,” Skin. Res. Technol. 11, 281–286 (2005).

[24] J. H. Yin, Y. Xia , “Proteoglycan concentrations in healthy and diseased articular cartilage by Fourier transform infrared imaging and principal component regression,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 133, 825–830 (2014).

[25] E. David-Vaudey, A. Burghardt, K. Keshari, A. Brouchet, M. Ries, S. Majumdar , “Fourier Transform Infrared Imaging of focal lesions in human osteoarthritic cartilage,” Eur. Cell. Mater. 10, 51–60 (2005).

[26] K. Yamamoto, T. Shishido, T. Masaoka, A. Imakiire , “Morphological studies on the ageing and osteoarthritis of the articular cartilage in C57 black mice,” J. Orthop. Surg. 13, 8–18 (2005).

[27] M. B. Goldring , “The role of the chondrocyte in osteoarthritis. Arthritis Rheum,” Arthritis Rheum. 43, 1916–1926 (2000).

[28] S. Saarakkala, P. Julkunen, P. Kiviranta, J. Makitalo, J. S. Jurvelin, R. K. Korhonen , “Depth-wise progression of osteoarthritis in human articular cartilage: Investigation of composition, structure and biomechanics,” Osteoarthr. Cartilage 18, 73–81 (2010).

[29] A. Hanifi, X. Bi, X. Yang, B. Kavukcuoglu, P. C. Lin, E. DiCarlo, P. G. Spencer, M. P. G. Bostrom, N. Pleshko , “Infrared Fiber Optic Probe Evaluation of Degenerative Cartilage Correlates to Histological Grading,” Am. J. Sports. Med. 40, 2853–2861 (2012).

Zhi-Hua Mao, Yue-Chao Wu, Xue-Xi Zhang, Hao Gao, Jian-Hua Yin. Comparative study on identification of healthy and osteoarthritic articular cartilages by fourier transform infrared imaging and chemometrics methods[J]. Journal of Innovative Optical Health Sciences, 2017, 10(3): 1650054.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!