激光与光电子学进展, 2021, 58 (2): 0228002, 网络出版: 2021-01-11   

基于卷积神经网络的高分遥感影像单木树种分类 下载: 1521次

Classification of Individual Tree Species in High-Resolution Remote Sensing Imagery Based on Convolution Neural Network
作者单位
1 中国科学院空天信息创新研究院数字地球重点实验室, 北京 100094
2 中国科学院大学电子电气与通信工程学院, 北京 100049
3 中国林业科学研究院资源信息研究所, 北京 100091
引用该论文

欧阳光, 荆林海, 阎世杰, 李慧, 唐韵玮, 谭炳香. 基于卷积神经网络的高分遥感影像单木树种分类[J]. 激光与光电子学进展, 2021, 58(2): 0228002.

Guang Ouyang, Linhai Jing, Shijie Yan, Hui Li, Yunwei Tang, Bingxiang Tan. Classification of Individual Tree Species in High-Resolution Remote Sensing Imagery Based on Convolution Neural Network[J]. Laser & Optoelectronics Progress, 2021, 58(2): 0228002.

参考文献

[1] 赵同谦, 欧阳志云, 郑华, 等. 中国森林生态系统服务功能及其价值评价[J]. 自然资源学报, 2004, 19(4): 480-491.

    Zhao T Q, Ouyang Z Y, Zheng H, et al. Forest ecosystem services and their valuation in China[J]. Journal of Natural Resources, 2004, 19(4): 480-491.

[2] 宋庆丰. 中国近40年森林资源变迁动态对生态功能的影响研究[D]. 北京: 中国林业科学研究院, 2015.

    Song QF. Study on impact of forest resource dynamic change on forest ecological function in recent 40 years in china[D]. Beijing: Chinese Academy of Forestry, 2015.

[3] 彭伟. 林业调查规划设计在林业生产建设中的重要性探究[J]. 绿色科技, 2018( 19): 141- 142.

    PengW. Research on the importance of forestry investigation planning and design in forestry production and construction[J]. Journal of Green Science and Technology, 2018( 19): 141- 142.

[4] 唐景华, 陈育娟. 林业调查规划设计在林业生产建设中的重要性分析[J]. 现代园艺, 2015( 20): 227- 228.

    Tang JH, Chen YJ. Analysis of the importance of forestry survey planning and design in forestry production and construction[J]. Xiandai Horticulture, 2015( 20): 227- 228.

[5] 邓广. 高空间分辨率遥感影像单株立木识别与树冠分割算法研究[D]. 北京: 中国林业科学研究院, 2009.

    DengG. Research on individual tree identification and crown segmentation algorithm in high spatial resolution remote sensing imagery[D]. Beijing: Chinese Academy of Forestry, 2009.

[6] Madonsela S, Cho M A, Mathieu R, et al. Multi-phenology WorldView-2 imagery improves remote sensing of savannah tree species[J]. International Journal of Applied Earth Observation and Geoinformation, 2017, 58: 65-73.

[7] Majid IA, Latif ZA, Adnan NA. Tree species classification using worldview-3 data[C]∥2016 7th IEEE Control and System Graduate Research Colloquium (ICSGRC),August 8-8, 2016, Shah Alam, Malaysia.New York: IEEE Press, 2016: 73- 76.

[8] Blanzieri E, Melgani F. Nearest neighbor classification of remote sensing images with the maximal margin principle[J]. IEEE Transactions on Geoscience and Remote Sensing, 2008, 46(6): 1804-1811.

[9] Friedl M A, Brodley C E. Decision tree classification of land cover from remotely sensed data[J]. Remote Sensing of Environment, 1997, 61(3): 399-409.

[10] Gislason P O, Benediktsson J A, Sveinsson J R. Random forests for land cover classification[J]. Pattern Recognition Letters, 2006, 27(4): 294-300.

[11] Settle J J, Briggs S A. Fast maximum likelihood classification of remotely-sensed imagery[J]. International Journal of Remote Sensing, 1987, 8(5): 723-734.

[12] Melgani F, Bruzzone L. Classification of hyperspectral remote sensing images with support vector machines[J]. IEEE Transactions on Geoscience and Remote Sensing, 2004, 42(8): 1778-1790.

[13] Civco D L. Artificial neural networks for land-cover classification and mapping[J]. International Journal of Geographical Information Systems, 1993, 7(2): 173-186.

[14] Franklin S E, Ahmed O S. Deciduous tree species classification using object-based analysis and machine learning with unmanned aerial vehicle multispectral data[J]. International Journal of Remote Sensing, 2018, 39(15/16): 5236-5245.

[15] Immitzer M, Atzberger C, Koukal T. Tree species classification with random forest using very high spatial resolution 8-band WorldView-2 satellite data[J]. Remote Sensing, 2012, 4(9): 2661-2693.

[16] Li D, Ke Y H, Gong H L, et al. Object-based urban tree species classification using Bi-temporal WorldView-2 and WorldView-3 images[J]. Remote Sensing, 2015, 7(12): 16917-16937.

[17] Wang D Z, Wan B, Qiu P H, et al. Artificial mangrove species mapping using pléiades-1: an evaluation of pixel-based and object-based classifications with selected machine learning algorithms[J]. Remote Sensing, 2018, 10(2): 294-315.

[18] 谢珠利. 基于多源高分辨率遥感数据的人工林树种分类研究[D]. 杭州: 浙江农林大学, 2019.

    Xie ZL. Plantation tree species classification with multi-source high resolution remotely sensed data[D]. Hangzhou: Zhejiang A & F University, 2019.

[19] 李永亮, 林辉, 孙华, 等. 基于BP神经网络的森林树种分类研究[J]. 中南林业科技大学学报, 2010, 30(11): 43-46.

    Li Y L, Lin H, Sun H, et al. Study on forest species classification based on BP neural network[J]. Journal of Central South University of Forestry & Technology, 2010, 30(11): 43-46.

[20] 余超. 基于WorldView-2的森林公园主要风景树种信息提取及生物量估测[D]. 南京: 南京林业大学, 2017.

    YuC. Information extraction and biomass estimation of main landscape tree species in forest park based on the WorldView-2[D]. Nanjing: Nanjing Forestry University, 2017.

[21] 闫敬文, 陈宏达, 刘蕾. 高光谱图像分类的研究进展[J]. 光学精密工程, 2019, 27(3): 680-693.

    Yan J W, Chen H D, Liu L. Overview of hyperspectral image classification[J]. Optics and Precision Engineering, 2019, 27(3): 680-693.

[22] 马俊成, 赵红东, 杨东旭, 等. 飞机目标分类的深度卷积神经网络设计优化[J]. 激光与光电子学进展, 2019, 56(23): 231006.

    Ma J C, Zhao H D, Yang D X, et al. Design and optimization of deep convolutional neural network for aircraft target classification[J]. Laser & Optoelectronics Progress, 2019, 56(23): 231006.

[23] 张晓男, 钟兴, 朱瑞飞, 等. 基于集成卷积神经网络的遥感影像场景分类[J]. 光学学报, 2018, 38(11): 1128001.

    Zhang X N, Zhong X, Zhu R F, et al. Scene classification of remote sensing images based on integrated convolutional neural networks[J]. Acta Optica Sinica, 2018, 38(11): 1128001.

[24] 刘大伟, 韩玲, 韩晓勇. 基于深度学习的高分辨率遥感影像分类研究[J]. 光学学报, 2016, 36(4): 0428001.

    Liu D W, Han L, Han X Y. High spatial resolution remote sensing image classification based on deep learning[J]. Acta Optica Sinica, 2016, 36(4): 0428001.

[25] Li Y, Zhang H K, Xue X Z, et al. Deep learning for remote sensing image classification: a survey[J]. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 2018, 8(6): e1264.

[26] Wegner JD, BransonS, HallD, et al.Cataloging public objects using aerial and street-level images: urban trees[C]∥2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 27-30, 2016, Las Vegas, NV, USA. New York: IEEE Press, 2016: 6014- 6023.

[27] Zou X H, Cheng M, Wang C, et al. Tree classification in complex forest point clouds based on deep learning[J]. IEEE Geoscience and Remote Sensing Letters, 2017, 14(12): 2360-2364.

[28] Onishi M, Ise T. Automatic classification of trees using a UAV onboard camera and deep learning[J]. Onboard Camera., 2018, 12(6): 15-19.

[29] 滕文秀, 温小荣, 王妮, 等. 基于深度迁移学习的无人机高分影像树种分类与制图[J]. 激光与光电子学进展, 2019, 56(7): 072801.

    Teng W X, Wen X R, Wang N, et al. Tree species classification and mapping based on deep transfer learning with unmanned aerial vehicle high resolution images[J]. Laser & Optoelectronics Progress, 2019, 56(7): 072801.

[30] Jing L H, Cheng Q M. Two improvement schemes of PAN modulation fusion methods for spectral distortion minimization[J]. International Journal of Remote Sensing, 2009, 30(8): 2119-2131.

[31] Jing L, Hu B, Li J, et al. Automated tree crown delineation from imagery based on morphological techniques[J]. IOP Conference Series: Earth and Environmental Science, 2014, 17: 012066.

[32] LeCun Y, Bottou L, Bengio Y, et al. Gradient-based learning applied to document recognition[J]. Proceedings of the IEEE, 1998, 86(11): 2278-2324.

[33] Krizhevsky A, Sutskever I, Hinton G E. ImageNet classification with deep convolutional neural networks[J]. Communications of the ACM, 2017, 60(6): 84-90.

[34] SzegedyC, LiuW, JiaY, et al.Going deeper with convolutions[C]∥2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 7-12, 2015, Boston, MA, USA.New York: IEEE Press, 2015: 1- 9.

[35] He KM, Zhang XY, Ren SQ, et al.Deep residual learning for image recognition[C]∥2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 27-30, 2016, Las Vegas, NV, USA.New York: IEEE Press, 2016: 770- 778.

[36] HuangG, Liu Z, van der Maaten L, et al. Densely connected convolutional networks[C]∥2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), July 21-26, 2017, Honolulu, HI, USA.New York: IEEE Press, 2017: 2261- 2269.

[37] Shelhamer E, Long J, Darrell T. Fully convolutional networks for semantic segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(4): 640-651.

欧阳光, 荆林海, 阎世杰, 李慧, 唐韵玮, 谭炳香. 基于卷积神经网络的高分遥感影像单木树种分类[J]. 激光与光电子学进展, 2021, 58(2): 0228002. Guang Ouyang, Linhai Jing, Shijie Yan, Hui Li, Yunwei Tang, Bingxiang Tan. Classification of Individual Tree Species in High-Resolution Remote Sensing Imagery Based on Convolution Neural Network[J]. Laser & Optoelectronics Progress, 2021, 58(2): 0228002.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!