液晶与显示, 2020, 35 (7): 725, 网络出版: 2020-10-27   

基于液晶散射膜的多平面增强现实显示

Review on multi-plane augmented reality display based on liquid crystal scattering films
作者单位
上海交通大学 电子工程系, 上海 200240
摘要
为实现自然、舒适的增强现实显示, 需要解决传统增强现实显示中调焦和辐辏冲突的问题。多平面显示通过在空间中构建二维切片画面来实现三维显示, 由于每层画面都显示在不同深度, 因此可以准确地表达三维显示的深度信息, 有效地缓解调焦和辐辏冲突的问题。本文主要介绍基于液晶散射膜的多平面增强现实显示系统, 包括基于正型聚合物稳定向列相液晶、反型聚合物稳定向列相液晶、聚合物稳定胆甾相液晶的多平面增强现实显示。聚合物稳定向列相液晶的响应速度可以达到0.65 ms, 聚合物稳定胆甾相液晶的响应速度也在3 ms以内, 因此可以通过时分复用的方式实现多平面增强现实显示。最后讨论了基于液晶散射膜多平面增强现实显示有待解决的问题以及未来的发展趋势。
Abstract
In order to achieve a natural and comfortable augmented reality display, it is necessary to solve the accommodation-vergence conflict problem in the conventional augmented reality displays. Multi-plane display realizes 3D display by constructing 2D slice pictures in space. Since each slice picture is displayed at a different depth, it can accurately display the depth information and effectively alleviate the accommodation-vergence conflict problem. This paper mainly introduces multi-plane augmented reality displays based on liquid crystal scattering devices, including normal-mode polymer stabilized liquid crystal (PSLC), reverse-mode PSLC and polymer stabilized cholesteric liquid crystal. The response time of the PSLC can reach 0.65 ms, and the response time of the polymer stabilized cholesteric liquid crystal is also within 3 ms, so multi-plane augmented reality displays can be realized based on time multiplexing method. Finally, the difficulties and future trends of multi-plane augmented reality displays based on liquid crystal scattering films are discussed.
参考文献

[1] GENG J. Three-dimensional display technologies [J]. Adv. Opt. Photonics, 2013, 5(4): 456-535.

    GENG J. Three-dimensional display technologies [J]. Adv. Opt. Photonics, 2013, 5(4): 456-535.

[2] JAVIDI B, OKANO F. Three-dimensional Television, Video, and Display Technologies [M]. Berlin Heidelberg: Springer, 2002.

    JAVIDI B, OKANO F. Three-dimensional Television, Video, and Display Technologies [M]. Berlin Heidelberg: Springer, 2002.

[3] CARMIGNIANI J, FURHT B, ANISETTI M, et al. Augmented reality technologies, systems and applications [J]. Multimed. Tools Appl., 2011, 51(1): 341-377.

    CARMIGNIANI J, FURHT B, ANISETTI M, et al. Augmented reality technologies, systems and applications [J]. Multimed. Tools Appl., 2011, 51(1): 341-377.

[4] CAKMAKCI O, ROLLAND J. Head-worn displays: a review [J]. J. Disp. Technol., 2006, 2(3): 199-216.

    CAKMAKCI O, ROLLAND J. Head-worn displays: a review [J]. J. Disp. Technol., 2006, 2(3): 199-216.

[5] ZOU B C, LIU Y, GUO M, et al. EEG-based assessment of stereoscopic 3D visual fatigue caused by vergence-accommodation conflict [J]. J. Disp. Technol., 2015, 11(12): 1076-1083.

    ZOU B C, LIU Y, GUO M, et al. EEG-based assessment of stereoscopic 3D visual fatigue caused by vergence-accommodation conflict [J]. J. Disp. Technol., 2015, 11(12): 1076-1083.

[6] SHIBATA T, KIM J, HOFFMAN D M, et al. Visual discomfort with stereo displays: effects of viewing distance and direction of vergence-accommodation conflict [C]//Proceedings of SPIE Stereoscopic Displays and Applications XXII. San Francisco Airport, California, United States: SPIE, 2011: 78630P.

    SHIBATA T, KIM J, HOFFMAN D M, et al. Visual discomfort with stereo displays: effects of viewing distance and direction of vergence-accommodation conflict [C]//Proceedings of SPIE Stereoscopic Displays and Applications XXII. San Francisco Airport, California, United States: SPIE, 2011: 78630P.

[7] HUA H, JAVIDI B. A 3D integral imaging optical see-through head-mounted display [J]. Opt. Express, 2014, 22(11): 13484-13491.

    HUA H, JAVIDI B. A 3D integral imaging optical see-through head-mounted display [J]. Opt. Express, 2014, 22(11): 13484-13491.

[8] PARK J H, HONG K, LEE B. Recent progress in three-dimensional information processing based on integral imaging [J]. Appl. Opt., 2009, 48(34): H77-H94.

    PARK J H, HONG K, LEE B. Recent progress in three-dimensional information processing based on integral imaging [J]. Appl. Opt., 2009, 48(34): H77-H94.

[9] SONG W T, CHENG Q J, LIU Y, et al. Three-dimensional image authentication using binarized images in double random phase integral imaging [J]. Chin. Opt. Lett., 2019, 17(5): 051002.

    SONG W T, CHENG Q J, LIU Y, et al. Three-dimensional image authentication using binarized images in double random phase integral imaging [J]. Chin. Opt. Lett., 2019, 17(5): 051002.

[10] HONG K, YEOM J, JANG C, et al. Full-color lens-array holographic optical element for three-dimensional optical see-through augmented reality [J]. Opt. Lett., 2014, 39(1): 127-130.

    HONG K, YEOM J, JANG C, et al. Full-color lens-array holographic optical element for three-dimensional optical see-through augmented reality [J]. Opt. Lett., 2014, 39(1): 127-130.

[11] LI G, LEE D,JEONG Y, et al. Holographic display for see-through augmented reality using mirror-lens holographic optical element [J]. Opt. Lett., 2016, 41(11): 2486-2489.

    LI G, LEE D,JEONG Y, et al. Holographic display for see-through augmented reality using mirror-lens holographic optical element [J]. Opt. Lett., 2016, 41(11): 2486-2489.

[12] WAKUNAMI K, HSIEH P Y, OI R, et al. Projection-type see-through holographic three-dimensional display [J]. Nat. Commun., 2016, 7: 12954.

    WAKUNAMI K, HSIEH P Y, OI R, et al. Projection-type see-through holographic three-dimensional display [J]. Nat. Commun., 2016, 7: 12954.

[13] LI X, CHEN C P, GAO H Y, et al. Video-rate holographic display using azo-dye-doped liquid crystal [J]. J. Disp. Technol., 2014, 10(6): 438-443.

    LI X, CHEN C P, GAO H Y, et al. Video-rate holographic display using azo-dye-doped liquid crystal [J]. J. Disp. Technol., 2014, 10(6): 438-443.

[14] LI X, CHEN C P, LI Y, et al. Real-time holographic display using quantum dot doped liquid crystal [J]. SID Symp. Dig. Tech. Pap., 2014, 45(1): 736-738.

    LI X, CHEN C P, LI Y, et al. Real-time holographic display using quantum dot doped liquid crystal [J]. SID Symp. Dig. Tech. Pap., 2014, 45(1): 736-738.

[15] UENO T, TAKAKI Y. Super multi-view near-eye display using time-multiplexing technique [C]//Proceedings of 3D Image Acquisition and Display: Technology, Perception and Applications. Orlando, Florida, the United States: OSA, 2018: 3Tu2G.4.

    UENO T, TAKAKI Y. Super multi-view near-eye display using time-multiplexing technique [C]//Proceedings of 3D Image Acquisition and Display: Technology, Perception and Applications. Orlando, Florida, the United States: OSA, 2018: 3Tu2G.4.

[16] TENG D D, XIONG Y, LIU L L, et al. Multiview three-dimensional display with continuous motion parallax through planar aligned OLED microdisplays [J]. Opt. Express, 2015, 23(5): 6007-6019.

    TENG D D, XIONG Y, LIU L L, et al. Multiview three-dimensional display with continuous motion parallax through planar aligned OLED microdisplays [J]. Opt. Express, 2015, 23(5): 6007-6019.

[17] TENG D D, WANG B, GENG T, et al. Super-parallel holographic correlator with optical fixing [J]. Opt. Laser Technol., 2007, 39(6): 1125-1129.

    TENG D D, WANG B, GENG T, et al. Super-parallel holographic correlator with optical fixing [J]. Opt. Laser Technol., 2007, 39(6): 1125-1129.

[18] AKELEY K, WATT S J, GIRSHICK A R, et al. A stereo display prototype with multiple focal distances [J]. ACM Trans. Graphics, 2004, 23(3): 804-813.

    AKELEY K, WATT S J, GIRSHICK A R, et al. A stereo display prototype with multiple focal distances [J]. ACM Trans. Graphics, 2004, 23(3): 804-813.

[19] SMALLEY D E, NYGAARD E, SQUIRE K, et al. A photophoretic-trap volumetric display [J]. Nature, 2018, 553(7689): 486-490.

    SMALLEY D E, NYGAARD E, SQUIRE K, et al. A photophoretic-trap volumetric display [J]. Nature, 2018, 553(7689): 486-490.

[20] LIU S, HUA H, CHENG D W. A novel prototype for an optical see-through head-mounted display with addressable focus cues [J]. IEEE Trans. Vis. Comput. Graphics, 2010, 16(3): 381-393.

    LIU S, HUA H, CHENG D W. A novel prototype for an optical see-through head-mounted display with addressable focus cues [J]. IEEE Trans. Vis. Comput. Graphics, 2010, 16(3): 381-393.

[21] HU X D, HUA H. Design and assessment of a depth-fused multi-focal-plane display prototype [J]. J. Disp. Technol., 2014, 10(4): 308-316.

    HU X D, HUA H. Design and assessment of a depth-fused multi-focal-plane display prototype [J]. J. Disp. Technol., 2014, 10(4): 308-316.

[22] HU X D, HUA H. Design and tolerance of a free-form optical system for an optical see-through multi-focal-plane display [J]. Appl. Opt., 2015, 54(33): 9990-9999.

    HU X D, HUA H. Design and tolerance of a free-form optical system for an optical see-through multi-focal-plane display [J]. Appl. Opt., 2015, 54(33): 9990-9999.

[23] CHEN H S, WANG Y J, CHEN P J, et al. Electrically adjustable location of a projected image in augmented reality via a liquid-crystal lens [J]. Opt. Express, 2015, 23(22): 28154-28162.

    CHEN H S, WANG Y J, CHEN P J, et al. Electrically adjustable location of a projected image in augmented reality via a liquid-crystal lens [J]. Opt. Express, 2015, 23(22): 28154-28162.

[24] TAN G J, ZHAN T, LEE Y H, et al. Polarization-multiplexed multiplane display [J]. Opt. Lett., 2018, 43(22): 5651-5654.

    TAN G J, ZHAN T, LEE Y H, et al. Polarization-multiplexed multiplane display [J]. Opt. Lett., 2018, 43(22): 5651-5654.

[25] LEE Y H, TAN G J, YIN K, et al. Compact see-through near-eye display with depth adaption [J]. J. Soc. Inf. Disp., 2018, 26(2): 64-70.

    LEE Y H, TAN G J, YIN K, et al. Compact see-through near-eye display with depth adaption [J]. J. Soc. Inf. Disp., 2018, 26(2): 64-70.

[26] LEE Y H, TAN G J, ZHAN T, et al. Recent progress in Pancharatnam-Berry phase optical elements and the applications for virtual/augmented realities [J]. Opt. Data Process. Storage, 2017, 3(1): 79-88.

    LEE Y H, TAN G J, ZHAN T, et al. Recent progress in Pancharatnam-Berry phase optical elements and the applications for virtual/augmented realities [J]. Opt. Data Process. Storage, 2017, 3(1): 79-88.

[27] LIU S X, LI Y, ZHOU P C, et al. A multi-plane optical see-through head mounted display design for augmented reality applications [J]. J. Soc. Inf. Disp., 2016, 24(4): 246-251.

    LIU S X, LI Y, ZHOU P C, et al. A multi-plane optical see-through head mounted display design for augmented reality applications [J]. J. Soc. Inf. Disp., 2016, 24(4): 246-251.

[28] LIU S X, LI Y, SU Y K. Multiplane displays based on liquid crystals for AR applications [J]. J. Soc. Inf. Disp., 2020, 28(3): 224-240.

    LIU S X, LI Y, SU Y K. Multiplane displays based on liquid crystals for AR applications [J]. J. Soc. Inf. Disp., 2020, 28(3): 224-240.

[29] LIU S X, LI Y, ZHOU P C, et al. Full-color multi-plane optical see-through head-mounted display for augmented reality applications [J]. J. Soc. Inf. Disp., 2018, 26(12): 687-693.

    LIU S X, LI Y, ZHOU P C, et al. Full-color multi-plane optical see-through head-mounted display for augmented reality applications [J]. J. Soc. Inf. Disp., 2018, 26(12): 687-693.

[30] LIU S X, LI Y, ZHOU P C, et al. Reverse-mode PSLC multi-plane optical see-through display for AR applications [J]. Opt. Express, 2018, 26(3): 3394-3403.

    LIU S X, LI Y, ZHOU P C, et al. Reverse-mode PSLC multi-plane optical see-through display for AR applications [J]. Opt. Express, 2018, 26(3): 3394-3403.

[31] LEE Y H, CHEN H W, MARTINEZ R, et al. Multi-image plane display based on polymer-stabilized cholesteric texture [J]. SID Symp. Dig. Tech. Pap., 2017, 48(1): 760-762.

    LEE Y H, CHEN H W, MARTINEZ R, et al. Multi-image plane display based on polymer-stabilized cholesteric texture [J]. SID Symp. Dig. Tech. Pap., 2017, 48(1): 760-762.

[32] JOSHI V, GROOM M, CHIEN L C. Glasses-free 3-D visualization with multi-layered transparent cholesteric films [J]. Opt. Express, 2019, 27(12): 16847-16854.

    JOSHI V, GROOM M, CHIEN L C. Glasses-free 3-D visualization with multi-layered transparent cholesteric films [J]. Opt. Express, 2019, 27(12): 16847-16854.

[33] CHEN Q M, PENG Z H, LI Y, et al. Multi-plane augmented reality display based on cholesteric liquid crystal reflective films [J]. Opt. Express, 2019, 27(9): 12039-12047.

    CHEN Q M, PENG Z H, LI Y, et al. Multi-plane augmented reality display based on cholesteric liquid crystal reflective films [J]. Opt. Express, 2019, 27(9): 12039-12047.

[34] CHEN Q M, PENG Z H, LI Y, et al. Multi-plane display based on cholosteric liquid crystal films [J]. SID Symp. Dig. Tech. Pap., 2019, 50(S1): 358-360.

    CHEN Q M, PENG Z H, LI Y, et al. Multi-plane display based on cholosteric liquid crystal films [J]. SID Symp. Dig. Tech. Pap., 2019, 50(S1): 358-360.

[35] LEE Y H, PENG F L, WU S T. Fast-response switchable lens for 3D and wearable displays [J]. Opt. Express, 2016, 24(2): 1668-1675.

    LEE Y H, PENG F L, WU S T. Fast-response switchable lens for 3D and wearable displays [J]. Opt. Express, 2016, 24(2): 1668-1675.

[36] LEE C K, MOON S, LEE S, et al. Compact three-dimensional head-mounted display system with Savart plate [J]. Opt. Express, 2016, 24(17): 19531-19544.

    LEE C K, MOON S, LEE S, et al. Compact three-dimensional head-mounted display system with Savart plate [J]. Opt. Express, 2016, 24(17): 19531-19544.

[37] YANG D K, WU S T. Fundamentals of Liquid Crystal Devices [M]. Chichester, West Sussex, United Kingdom: John Wiley & Sons, 2015.

    YANG D K, WU S T. Fundamentals of Liquid Crystal Devices [M]. Chichester, West Sussex, United Kingdom: John Wiley & Sons, 2015.

[38] SUN J, WU S T. Recent advances in polymer network liquid crystal spatial light modulators [J]. J. Polym. Sci. Part B: Polym. Phys., 2014, 52(3): 183-192.

    SUN J, WU S T. Recent advances in polymer network liquid crystal spatial light modulators [J]. J. Polym. Sci. Part B: Polym. Phys., 2014, 52(3): 183-192.

[39] SUN J, XIANYU H Q, CHEN Y, et al. Submillisecond-response polymer network liquid crystal phase modulators at 1.06-μm wavelength [J]. Appl. Phys. Lett., 2011, 99(2): 021106.

    SUN J, XIANYU H Q, CHEN Y, et al. Submillisecond-response polymer network liquid crystal phase modulators at 1.06-μm wavelength [J]. Appl. Phys. Lett., 2011, 99(2): 021106.

[40] RYABCHUN A, BOBROVSKY A. Cholesteric liquid crystal materials for tunable diffractive optics [J]. Adv. Opt. Mater., 2018, 6(15): 1800335.

    RYABCHUN A, BOBROVSKY A. Cholesteric liquid crystal materials for tunable diffractive optics [J]. Adv. Opt. Mater., 2018, 6(15): 1800335.

[41] MITOV M. Cholesteric liquid crystals with a broad light reflection band [J]. Adv. Mater., 2012, 24(47): 6260-6276.

    MITOV M. Cholesteric liquid crystals with a broad light reflection band [J]. Adv. Mater., 2012, 24(47): 6260-6276.

刘澍鑫, 李燕, 苏翼凯. 基于液晶散射膜的多平面增强现实显示[J]. 液晶与显示, 2020, 35(7): 725. LIU Shu-xin, LI Yan, SU Yi-kai. Review on multi-plane augmented reality display based on liquid crystal scattering films[J]. Chinese Journal of Liquid Crystals and Displays, 2020, 35(7): 725.

本文已被 4 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!