红外与激光工程, 2019, 48 (7): 0717002, 网络出版: 2019-08-07   

用于易燃易爆危险化学品快速识别的手机拉曼系统

Smartphone-based Raman system for rapid detection of flammable and explosive chemicals
作者单位
1 合肥工业大学 仪器科学与光电工程学院, 安徽 合肥 230009
2 北京信息科技大学 先进光电子器件与系统创新引智基地, 北京 100192
摘要
危险化学品泄漏, 公共场所爆炸等安全问题时刻威胁公众安全, 亟需研究用于危化品现场检测的便携、快速、准确的探测装置。虽然现有的检测装置能够实现对样品的识别, 但由于体积大, 需要预处理, 不适合现场快检。因此, 提出了将拉曼系统与手机融合, 使其更加便捷, 便于实现对危险化学品的现场快速识别。该仪器采用了大数值孔径镜头(F/2.0)替换传统反射光谱仪中凹面反射镜(F/4.0), 光学收集效率提高了近4倍, 同时利用体相位全息光栅和狭缝空间耦合技术, 提高了系统的灵敏度。文中利用设计的拉曼系统对10种易燃易爆危险化学样品进行光谱测试, 实现了对危化品的现场检测, 10种危化品与数据库的匹配系数能达到95%以上, 具有快速、准确、无损的优势, 对日后的安检应用领域具有重要意义。
Abstract
Due to the public safety was always threatened by the safety problems such as leakage of hazardous chemicals and explosions in public places, it was urgent to develop a portable, rapid and accurate detection device for on-site detection of hazardous chemicals. Although the existing detection devices were able to identify the samples, because of the large volume and the demand of pretreatment, they cannot be applied in on-site quick inspection. Therefore, the fusion the Raman system and smart phone were integrated to make it more convenient and easy to fast recognition hazardous chemicals on- site. The instrument adopts big aperture lens (F/2.0) replaced the concave reflector (F/4.0) in traditional reflectance spectromete and the optical collection efficiency has increased by nearly 4 times. At the same time, the volume phase holographic transmission grating (VPG) and slit coupling technology were adopted to improve the sensitivity of the system. There were ten kinds of flammable and explosive dangerous chemical samples tested by this Raman spectroscopy system, which help to realize the on-site inspection and has the advantages of rapidity, accuracy and non-destructibility. The matching coefficient between the ten dangerous chemicals and the database can reach more than 95%. It was of great significance to the future security application.
参考文献

[1] Yao Qifeng, Wang Shuai, Xia Jiabin, et al. Remote Raman spectrum detection system of material[J]. Infrared and Laser Engineering, 2016, 45(11): 1103001. (in Chinese)

[2] Wang Shuai, Xia Jiabin, Yao Qifeng, et al. Fore optical system design for remote laser Raman spectrum detection system[J]. Infrared and Laser Engineering, 2018, 47(4): 0418004. (in Chinese)

[3] West M J, Went M J. Detection of drugs of abuse by Raman spectroscopy[J]. Drug Testing & Analysis, 2011,3(9): 532-538.

[4] Stewart S P, Bell S E, Mcauley D, et al. Determination of hydrogen peroxide concentration using a handheld Raman spectrometer: Detection of an explosives precursor[J]. Forensic Science International, 2012, 216(1-3): e5-e8.

[5] Luo Xiyun, Ye Fei, Wu Laiming, et al. Study of mobile Raman spectroscopy for rapid evaluation of deteriorating of art materials under UV irradiation[J]. Spectroscopy and Spectral Analysis, 2010, 30(9): 2405-2408. (in Chinese)

[6] Madden O, Chan D M W, Dundon M, et al. Quantifying collagen quality in archaeological bone: Improving data accuracy with benchtop and handheld Raman spectrometers[J]. Journal of Archaeological Science Reports, 2018, 18(4): 596-605.

[7] Liu Teng, Li Lijun, Li Xuan, et al. The SERS spectra detection of norfloxacin on silver nanowires substrate[J]. The Journal of Light Scattering, 2017, 29(4): 303-308. (in Chinese)

[8] Zhang Y, Liu H, Tang J, et al. Non-invasively imaging subcutaneous tumor xenograft by handheld Raman detector with assistance of optical clearing agent[J]. Acs Applied Materials & Interfaces, 2017, 9(21): 17769-17776.

[9] Tondepu C, Toth R, Navin C V, et al. Screening of unapproved drugs using portable Raman spectroscopy[J]. Analytica Chimica Acta, 2017, 973(4): 75-81.

[10] Karunathilaka S R, Yakes B J, He K, et al. First use of handheld Raman spectroscopic devices and on-board chemometric analysis for the detection of milk powder adulteration[J]. Food Control, 2018, 92(10): 137-146.

[11] Fan Xianguang, Wang Xin, Xu Yingjie, et al. Design of Raman spectroscopy measurement system based on shiners[J]. Infrared and Laser Engineering, 2013, 42(7): 1798-1803. (in Chinese)

[12] Jentzsch P V, Torrico-Vallejos S, Mendieta-Brito S, et al. Detection of counterfeit stevia products using a handheld Raman spectrometer[J]. Vibrational Spectroscopy, 2016, 83(2):126-131.

[13] Christesen S D, Guicheteau J A, Curtiss J M, et al. Handheld dual-wavelength Raman instrument for the detection of chemical agents and explosives[J]. Optical Engineering, 2016, 55(7): 074103.

[14] Jehli■ka J, Culka A, Bersani D, et al. Comparison of seven portable Raman spectrometers: beryl as a case study[J]. Journal of Raman Spectroscopy, 2017, 48(10): 1289-1299.

[15] Owen H. The impact of volume phase holographic filters and gratings on the development of raman instrumentation[J]. Journal of Chemical Physics, 2007, 84(1): 61-66.

[16] Sharma S K, Misra A K, Lucey P G, et al. Remote pulsed Raman spectroscopy of inorganic and organic materials to a radial distance of 100 meters[J]. Applied Spectroscopy, 2006, 60(8): 871-876.

[17] Gao Xiangjun, Zhu Li, Guo Wenlong. Design and application of high polarized purity metasurface lens[J]. Acta Physica Sinica, 2017, 66(20): 50-59. (in Chinese)

[18] Tang M, Wang X, Xianguang F, et al. High sensitivity and resolution integrated optical system for portable Raman spectrometer[J]. Appl Opt, 2016, 55(26): 7195-7203.

[19] Liu D, Ullman F G, Hardy J R. Raman scattering and lattice-dynamical calculations of crystalline KNO3[J]. Phys.Rev B, 1992, 45(5): 2142-2147.

[20] Waterland M R, Kelley A M. Far-ultraviolet resonance Raman spectroscopy of nitrate ion in solution[J]. Journal of Chemical Physics, 2000, 113(16): 6760-6773.

[21] Schrader B. Infrared and raman spectroscopy:methods and applications[J]. Journal of Molecular Structure Theochem, VCH, 1996, 380(3): 283.

[22] Cai Zhipeng. The study on vibration spectra of correlative organic ester compounds in the Chinese famous liquor[D]. Zhengzhou: Henan University, 2007. (in Chinese)

[23] Michniewicz N, Muszyński A S, Wrzeszcz W, et al. Vibrational spectra of liquid 1-propanol[J]. Journal of Molecular Structure, 2008, 887(1): 180-186.

李天舒, 姚齐峰, 李红, 王帅, 董明利. 用于易燃易爆危险化学品快速识别的手机拉曼系统[J]. 红外与激光工程, 2019, 48(7): 0717002. Li Tianshu, Yao Qifeng, Li Hong, Wang Shuai, Dong Mingli. Smartphone-based Raman system for rapid detection of flammable and explosive chemicals[J]. Infrared and Laser Engineering, 2019, 48(7): 0717002.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!