红外与激光工程, 2018, 47 (9): 0903005, 网络出版: 2018-10-06   

分集阵列式水下激光通信光学接收天线设计

Design of optical receiving antenna for underwater laser communication based on diversity array
作者单位
1 西安邮电大学 电子工程学院, 陕西 西安 710121
2 中国船舶重工集团第705研究所 水下信息与控制重点实验室, 陕西 西安 710121
摘要
针对水下无线激光通信系统中对准困难的问题, 提出了一种分集阵列式光学接收天线, 在光学设计软件Zemax中分别设计出了复合光学接收天线和分集阵列式光学接收天线的光学结构, 分析了复合光学接收天线和分集阵列式光学接收天线的视场角、聚光效率以及光源移动范围, 并且通过实验和Matlab仿真给出两种光学接收天线的聚光效率随光源径向移动范围和光源入射角的关系, 结果表明: 当光源尺寸10 mm时, 复合光学接收天线的聚光效率是0.06%, 接收视场角是±6°, 光源径向移动范围是±6 mm; 分集阵列式光学接收天线的聚光效率是0.06%, 接收视场角是±16°, 光源径向移动范围是±22 mm。因此分集阵列式光学接收天线更适用于水下激光通信系统。
Abstract
A diversified array optical receiving antenna was designed for the problem of alignment difficulty in underwater wireless laser communication systems. The optical structures of the composite optical receiving antenna and diversity array optical receiving antenna were designed by the optical design software Zemax, and the field of view angle, the light gathering efficiency and the light source moving range of the two kinds of antenna were analyzed. Besides, the light gathering efficiency as a function of the light source moving range and the incident angle of the light source of the two kinds of optical receiving antennas was given by experiments and Matlab simulations. The results show that when the light source size is 10 mm, the light gathering efficiency of the composite optical receiving antenna is 0.06%, the receiving field angle is ±6°, the moving range of the light source is ±6 mm. And the light gathering efficiency of the diversity array optical receiving antenna is 0.06%, the receiving field angle is ±16°, the moving range of the light source is ±22 mm. Therefore, the diversity array optical receiving antenna was more suitable for underwater laser communication systems.
参考文献

[1] Chan V W S. Optical satellite networks [J]. Journal of Lightwave Technology, 2003, 21(11): 2811-2827.

[2] Borah D K, Boucouvalas A C, Davis C C, et al. A review of communication-oriented optical wireless systems [J]. EURASIP J Wireless Commun. Networking, 2012, 91: 1-28.

[3] Shen T C, Drost R J, Davis C C, et al. Design of duallink (wide-and narrow-beam) LED communication systems [J]. Optical Express, 2014, 22: 11107-11118.

[4] 李少辉, 陈小梅, 倪国强. 高精度卫星激光通信地面验证系统[J]. 光学 精密工程, 2017, 25(5): 1149-1158.

    Li Shaohui, Chen Xiaomei, Ni Guoqiang. Highly precise ground certification system of satellite laser communication [J]. Optics and Precision Engineering, 2017, 25(5): 1149-1158. (in Chinese)

[5] 张红鑫, 卢振武, 王瑞庭, 等. 曲面复眼成像系统的研究[J]. 光学 精密工程, 2006, 14(3): 346-350.

    Zhang Hongxin, Lu Zhenwu, Wang Ruiting, et al. Study on curved compound eye imaging system [J]. Optics and Precision Engineering, 2006, 14(3): 346-350. (in Chinese)

[6] 吴俊峰, 朱娜, 江晓明. 一种新型可见光无线通信可调复眼光学接收系统[J]. 无线通信技术, 2012, 21(4): 48-51, 54.

    Wu Junfeng, Zhu Na, Jiang Xiaoming. A new type of adjustable compound eye optical array antenna for visible light communication[J]. Wireless Communication Technology, 2012, 21(4): 48-51, 54. (in Chinese)

[7] 俞建杰, 李宣娇, 谭立英, 等. 离轴天线在卫星激光通信系统中的应用[J]. 红外与激光工程, 2013, 42(7): 1890-1895.

    Yu Jianjie, Li Xuanjiao, Tan Liying, et al. Off-axis optical telescope for satellite laser communication terminal [J]. Infrared and Laser Engineering, 2013, 42(7): 1890-1895. (in Chinese)

[8] 孙权社, 赵发财, 陈坤峰, 等.空间激光通信系统离轴天线设计研究[J]. 红外与激光工程, 2015, 44(8): 2501-2505.

    Sun Quanshe, Zhao Facai, Chen Kunfeng, et al. Design of off-axis optical antenna for space optical communications [J]. Infrared and Laser Engineering, 2015, 44(8): 2501-2505. (in Chinese)

[9] Suryakant Gautam, Amit Gupta, Ganga Sharan Singh. Optical design of off-axis cassegrain telescope using freeform surface at the secondary mirror [J]. Optical Engineering, 2015, 54(2): 1-2.

[10] Yuan Hu, Lun Jiang, Chao Wang, et al. Optimum design of cassegrain antenna for space laser Communication[C]//SPIE, 2016,(10158): 10158-1-6.

[11] 刘显著, 王超, 李英超, 等. 基于轴锥镜对的高光能利用率激光通信天线性能分析[J]. 光子学报, 2017, 46(7): 54-60.

    Liu Xianzhu, Wang Chao, Li Yingchao, et al. Analysis of performance of high light-energy-utilization-ration laser communication antenna based on axicon pair [J]. Acta Photonica Sinica, 2017, 46(7): 54-60. (in Chinese)

[12] 关姝, 王超, 佟首峰, 等.空间激光通信离轴两镜反射望远镜自由曲面光学天线设计[J]. 红外与激光工程, 2017, 46(12): 1222003.

    Guan Shu, Wang Chao, Tong Shoufeng, et al. Optical antenna design of off-axis two-mirror reflective telescope with freeform surface for space laser communication[J]. Infrared and Laser Engineering, 2017,46(12): 1222003. (in Chinese)

[13] Tao Zhang, Shan Mao, Qiang Fu, et al. Networking optical antenna of space laser communication[J]. Journal of Laser Applications, 2017, 29(1): 0120121-0120129.

[14] Cheng Yifei, Kong Weimei, Ali Tariq, et al. 26 m/5.5 Gbps air-water optical wireless communication based on an OFDM-modulated 520-nm laser diode[J]. Optics Express, 2017, 25(13): 14760-14765.

[15] Li C Y. A 5 m/25 Gbps underwater wireless optical communication system [J]. IEEE Photonics Journal, 2018, 10(3): 1-9.

[16] 王菲, 阴亚芳, 杨祎. 海水信道激光传输距离对接收功率的影响分析[J]. 光通信研究, 2017(2): 23-26.

    Wang Fei, Yin Yafang, Yang Yi. Analysis of the influence of seawater channel laser transmission distance on the receiver sensitivity [J]. Study on Optical Communications, 2017(2): 23-26. (in Chinese)

[17] Tang Shijian, Zhang Xuedan, Dong Yuhan. On impulse response for underwater wireless optical links [C]//2013 MTS/IEEE OCEANS-Bergen, 2013: 1-4.

[18] 张逸新. 光波在大气中的传输与成像[M]. 北京: 国防工业出版社, 1997: 114-128.

    Zhang Yixin. Transmission and Imaging of Light Waves in the Atmosphere [M]. Beijing: National Defense Industry Press, 1997: 114-128. (in Chinese)

贺锋涛, 石文娟, 朱云周, 张建磊. 分集阵列式水下激光通信光学接收天线设计[J]. 红外与激光工程, 2018, 47(9): 0903005. He Fengtao, Shi Wenjuan, Zhu Yunzhou, Zhang Jianlei. Design of optical receiving antenna for underwater laser communication based on diversity array[J]. Infrared and Laser Engineering, 2018, 47(9): 0903005.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!