光学学报, 2014, 34 (1): 0100001, 网络出版: 2014-01-09   

上海光源X射线成像及其应用研究进展 下载: 1785次

Progresses of X-Ray Imaging Methodology and Its Applications at Shanghai Synchrotron Radiation Facility
作者单位
中国科学院上海应用物理研究所, 上海 201800
摘要
作为具有国际先进水平的第三代同步辐射光源,上海光源的X射线亮度比普通X光管高12~16个量级,基于它的X射线成像具有高空间分辨、高衬度分辨和快时间分辨的特点,同步辐射X射线可对样品实现原位、无损、高分辨、三维和动态成像,而且可以实现相位衬度成像,从而将X射线成像的应用领域拓展到软组织、聚合物等低Z材料。自2009年正式向用户开放以来,上海光源已在生物医学、材料科学、古生物学、土壤学等领域取得了一大批重要研究成果。为更好地支持用户,上海光源X射线成像组在定量成像、CT成像、快速CT重构等成像方法学领域开展了较为全面、系统的研究,大幅提高了实验效率和对不同样品的适应性。本文简要介绍了上海光源X射线成像方法学发展及相关应用研究进展。
Abstract
The X-ray flux of Shanghai synchrotron radiation facility (SSRF), a world-class SR source of the third generation, is about 12 to 16 orders of magnitude higher than X-ray tube flux. SR imaging has properties of high spatial resolution, high contrast resolution and high time resolution. The SR imaging can obtain in-situ, non-destruction, high-resolution, three-dimension and dynamic imaging of samples; moreover, the phase imaging technique can be utilized which can extend its applications to low-Z materials like soft tissue and polymer. Since SSRF was formally opened to users in 2009, it has made significant research results in the fields of biomedical, materials science, paleontology, pedology and so on. In order to further support users′ experiments, the SSRF X-ray imaging group has carried out systematic X-ray imaging methodology researches in quantitative imaging, tomography, fast tomography data processing and so on, which substantially increases the experimental efficiency and sample adaptability. The progress of X-ray imaging methodology and its applications at SSRF are introduced.
参考文献

[1] W C Rntgen. On a new kind of rays [J]. Nature, 1896, 53(1369): 274-276.

[2] H E Martz, C M Logan, D J Schneberk, et al.. X-Ray Imaging: Fundamentals, Industrial Techniques, and Applications [M]. Boca Raton: CRC Press, 2013.

[3] T Q Xiao, A Bergamaschi, D Dreossi, et al.. Effect of spatial coherence on application of in-line phase contrast imaging to synchrotron radiation mammography [J]. Nucl Instrum Meth A, 2004, 548(1-2): 155-162.

[4] P Willmott. An Introduction to Synchrotron Radiation: Techniques and Applications [M]. New York: John Wiley & Sons, 2011.

[5] A Momose. Demonstration of phase-contrast X-ray computed-tomography using an X-ray interferometer [J]. Nucl Instrum Meth A, 1995, 352(3): 622-628.

[6] T J Davis, D Gao, T E Gureyev, et al.. Phase-contrast imaging of weakly absorbing materials using hard X-rays [J]. Nature, 1995, 373(6515): 595-598.

[7] T Weitkamp, A Diaz, B Nohammer, et al.. Hard X-ray phase imaging and tomography with a grating interferometer [C]. SPIE, 2004, 5535: 137-142.

[8] S W Wilkins, T E Gureyev, D Gao, et al.. Phase-contrast imaging using polychromatic hard X-rays [J]. Nature, 1996, 384(6607): 335-338.

[9] K A Nugent, T E Gureyev, D F Cookson, et al.. Quantitative phase imaging using hard X-rays [J]. Phys Rev Lett, 1996, 77(14): 2961-2964.

[10] T E Gureyev, S W Wilkins. On X-ray phase retrieval from polychromatic images [J]. Opt Commun, 1998, 147(4-6): 229-232.

[11] P Cloetens, W Ludwig, J Baruchel, et al.. Holotomography: quantitative phase tomography with micrometer resolution using hard synchrotron radiation X-rays [J]. Appl Phys Lett, 1999, 75(19): 2912-2914.

[12] M W Westneat, O Betz, R W Blob, et al.. Tracheal respiration in insects visualized with synchrotron X-ray imaging [J]. Science, 2003, 299(5606): 558-560.

[13] H Y Lu, Y T Wang, X S He, et al.. Netrin-1 hyper expression in mouse brain promotes angiogenesis and long-term neurological recovery after transient focal ischemia [J]. Stroke, 2012, 43(3): 838-843.

[14] T M Wang, J J Xu, T Q Xiao, et al.. Evolution of dendrite morphology of a binary alloy under an applied electric current: an in situ observation [J]. Phys Rev E, 2010, 81(4): 042601.

[15] Q Dong, J Zhang, J F Dong, et al.. Anaxial columnar dendrites in directional solidification of an Al-15 wt.% Cu alloy [J]. Materials Letters, 2011, 65(21-22): 3295-3297.

[16] Q Dong, J Zhang, J F Dong, et al.. In situ observation of columnar-to-equiaxed transition in directional solidification using synchrotron X-radiation imaging technique [J]. Materials Science and Engineering A, 2011, 530: 271-276.

[17] W Jin, B B Chen, J Y Li, et al.. TIEG1 inhibits breast cancer invasion and metastasis by inhibition of epidermal growth factor receptor (EGFR) transcription and the EGFR signaling pathway [J]. Mol Cell Biol, 2012, 32(1): 50-63.

[18] C L Dai, H Guo, J X Lu, et al.. Osteogenic evaluation of calcium/magnesium-doped mesoporous silica scaffold with incorporation of rhBMP-2 by synchrotron radiation-based μCT [J]. Biomaterials, 2011, 32(33): 8506-8517.

[19] F Yang, J Wang, J Hou, et al.. Bone regeneration using cell-mediated responsive degradable PEG-based scaffolds incorporating with rhBMP-2 [J]. Biomaterials, 2013, 34(5): 1514-1528.

[20] Y Jiang, Y Tong, S Lu. Visualizing the three-dimensional mesoscopic structure of dermal tissues [J]. Journal of Tissue Engineering and Regenerative Medicine, 2012, doj: 10.1002/term.1579.

[21] F Xu, Y Li, X Hu, et al.. In situ investigation of metal's microwave sintering [J]. Materials Letters, 2012, 67(1): 162-164.

[22] X G Zhang, B R Pratt. The first stalk-eyed phosphatocopine crustacean from the lower cambrian of China [J]. Curr Biol, 2012, 22(22): 2149-2154.

[23] H Zhou, X H Peng, E Perfect, et al.. Effects of organic and inorganic fertilization on soil aggregation in an Ultisol as characterized by synchrotron based X-ray micro-computed tomography [J]. Geoderma, 2013, 195-196: 23-30.

[24] H Zhou, X Peng, S Peth, et al.. Effects of vegetation restoration on soil aggregate microstructure quantified with synchrotron-based micro-computed tomography [J]. Soil & Tillage Research, 2012, 124: 17-23.

[25] 李治龙, 吴志军, 高原, 等. 基于同步辐射高能X射线的喷油器喷嘴内部几何结构及尺寸的测量[J]. 吉林大学学报(工学版), 2011, 41(1): 128-132.

    Li Zhilong, Wu Zhijun, Gao Yuan, et al.. Measurement method for diesel nozzle internal geometry and size using high-energy synchrotron radiation X-ray [J]. Journal of Jilin University(Engineering and Technology Edition), 2011, 41(1): 128-132.

[26] R C Chen, H L Xie, L Rigon, et al.. Phase retrieval in quantitative X-ray microtomography with a single sample-to-detector distance [J]. Opt Lett, 2011, 36(9): 1719-1721.

[27] 刘慧强, 王玉丹, 任玉琦, 等. 采用吸收修正Bronnikov算法的有机复合样品的X射线显微计算机层析研究[J]. 光学学报, 2012, 32(4): 0434001.

    Liu Huiqiang, Wang Yudan, Ren Yuqi, et al.. Investigation on X-ray micro-computed tomography suitable for organic compound samples based on modifed bronnikov algorithm [J]. Acta Optica Sinica, 2012, 32(4): 0434001.

[28] R C Chen, L Rigon, R Longo. Comparison of single distance phase retrieval algorithms by considering different object composition and the effect of statistical and structural noise [J]. Opt Express, 2013, 21(6): 7384-7399.

[29] H Liu, Y Ren, H Guo, et al.. Phase retrieval for hard X-ray computed tomography of samples with hybrid compositions [J]. Chin Opt Lett, 2012, 10(12): 121101.

[30] Y Q Ren, C Chen, R C Chen, et al.. Optimization of image recording distances for quantitative X-ray in-line phase contrast imaging [J]. Opt Express, 2011, 19(5): 4170-4181.

[31] 任玉琦, 周光照, 王玉丹, 等. 复合组分材料的X射线定量相衬成像研究[J]. 光学学报, 2011, 31(8): 0834002.

    Ren Yuqi, Zhou Guangzhao, Wang Yudan, et al.. Study of multi-component sample using quantitative X-ray phase contrast imaging [J]. Acta Optica Sinica, 2011, 31(8): 0834002.

[32] 刘丽想, 杜国浩, 胡雯, 等. X射线同轴轮廓成像中影响成像质量的若干因素研究[J]. 物理学报, 2007, 56(8): 4556-4564.

    Liu Lixiang, Du Guohao, Hu Wen, et al.. Effect of some factors on imaging quality of X-ray in-line outline imaging [J]. Acta Physica Sinica, 2007, 56(8): 4556-4564.

[33] 刘丽想, 杜国浩, 胡雯, 等. 利用定量相衬成像消除X射线同轴轮廓成像中散射的影响[J]. 物理学报, 2006, 55(12): 6387-6394.

    Liu Lixiang, Du Guohao, Hu Wen, et al.. Application of quantitative imaging to elimination of scattering effect on X-ray in-line outline imaging [J]. Acta Physica Sinica, 2006, 55(12): 6387-6394.

[34] B Deng, Q Yang, H L Xie, et al.. First X-ray fluorescence CT experimental results at the SSRF X-ray imaging beamline [J]. Chinese Phys C, 2011, 35(4): 402-404.

[35] 杨群, 邓彪, 吕巍巍, 等. 利用荧光CT实现生物医学样品内元素分布的无损成像[J]. 光谱学与光谱分析, 2011, (10): 2753-2757.

    Yang Qun, Deng Biao, Lü Weiwei, et al.. Nondestructive imaging of elements distribution in biomedical samples by X-ray fluorescence computed tomography [J]. Spectroscopy and Spectral Analysis, 2011, (10): 2753-2757.

[36] 周光照, 佟亚军, 陈灿, 等. 相干X射线衍射成像的数字模拟研究[J]. 物理学报, 2011, 60(2): 028701.

    Zhou Guangzhao, Tong Yajun, Chen Can, et al.. Digital simulation for coherent X-ray diffractive imaging [J]. Acta Physica Sinica, 2011, 60(2): 028701.

[37] 周光照, 王玉丹, 任玉琦, 等. 相干X射线衍射成像三维重建的数字模拟研究[J]. 物理学报, 2012, 61(1): 018701.

    Zhou Guangzhao, Wang Yudan, Ren Yuqi, et al.. Digital simulation for 3D reconstruction of coherent X-ray diffractive imaging [J]. Acta Physica Sinica, 2012, 61(1): 018701.

[38] 王玉丹, 彭冠云, 佟亚军, 等. 影响同步辐射X射线螺旋显微CT的若干因素研究[J]. 物理学报, 2012, 61(5): 054205.

    Wang Yudan, Peng Guanyu, Tong Yajun, et al.. Effects of some factors on X-ray spiral micro-computed tomography at synchrotron radiation [J]. Acta Physica Sinica, 2012, 61(5): 054205.

[39] 郭荣怡, 马红娟, 薛艳玲, 等. 利用X射线K边减影成像研究铜离子在聚合物材料上的吸附[J]. 光学学报, 2010, 30(10): 2898-2903.

    Guo Rongyi, Ma Hongjuan, Xue Yanling, et al.. K-edge digital subtraction X-ray imaging for observation of Cu2+ adsorption in polymer particles [J]. Acta Optica Sinica, 2010, 30(10): 2898-2903.

[40] 沈飞, 陈荣昌, 肖体乔. 基于GPU并行计算实现快速显微CT重构[J]. 核技术, 2011, 34(6): 401-405.

    Shen Fei, Chen Rongchang, Xiao Tiqiao. GPU-based parallel computing for fast image reconstruction in micro CT [J]. Nucl Tech, 2011, 34(6): 401-405.

[41] R C Chen, D Dreossi, L Mancini, et al.. PITRE: software for phase-sensitive X-ray image processing and tomography reconstruction [J]. Journal of Synchrotron Radiation, 2012, 19: 836-845.

[42] P Cloetens, R Barrett, J Baruchel, et al.. Phase objects in synchrotron radiation hard X-ray imaging [J]. J Phys D Appl Phys, 1996, 29(1): 133-146.

[43] J Baruchel, P Bleuet, A Bravin, et al.. Advances in synchrotron hard X-ray based imaging [J]. Cr Phys, 2008, 9(5-6): 624-641.

[44] C Raven, A Snigirev, I Snigireva, et al.. Phase-contrast microtomography with coherent high-energy synchrotron X-rays [J]. Appl Phys Lett, 1996, 69(13): 1826-1828.

[45] A Groso, R Abela, M Stampanoni. Implementation of a fast method for high resolution phase contrast tomography [J]. Opt Express, 2006, 14(18): 8103-8110.

[46] M A Beltran, D M Paganin, K Uesugi, et al.. 2D and 3D X-ray phase retrieval of multi-material objects using a single defocus distance [J]. Opt Express, 2010, 18(7): 6423-6436.

[47] D Paganin, S C Mayo, T E Gureyev, et al.. Simultaneous phase and amplitude extraction from a single defocused image of a homogeneous object [J]. J Microsc-oxford, 2002, 206: 33-40.

[48] R C Chen, L Rigon, R Longo. Quantitative 3D refractive index decrement reconstruction using single-distance phase-contrast tomography data [J]. J Phys D Appl Phys, 2011, 44(49): 495401.

[49] A V Bronnikov. Theory of quantitative phase-contrast computed tomography [J]. J Opt Soc Am A, 2002, 19(3): 472-480.

[50] T E Gureyev, T J Davis, A Pogany, et al.. Optical phase retrieval by use of first Born-and Rytov-type approximations [J]. Appl Opt, 2004, 43(12): 2418-2430.

[51] C Y Chou, Y Huang, D Shi, et al.. Image reconstruction in quantitative X-ray phase-contrast imaging employing multiple measurements [J]. Opt Express, 2007, 15(16): 10002-10025.

[52] D Paganin, A Barty, P J McMahon, et al.. Quantitative phase-amplitude microscopy. III. The effects of noise [J]. J Microsc-oxford, 2004, 214(1): 51-61.

[53] J Bigot, F Gamboa, M Vimond. Estimation of translation, rotation, and scaling between noisy images using the Fourier-Mellin transform [J]. Siam Journal on Imaging Sciences, 2009, 2(2): 614-645.

[54] R C González. Digital Image Processing [M]. Boston: Addison-Wesley, 2002.

[55] L Mandel, E Wolf. Spectral coherence and the concept of cross-spectral purity [J]. J Opt Soc Am, 1976, 66(6): 529-535.

[56] B Golosio, A Somogyi, A Simionovici, et al.. Nondestructive three-dimensional elemental microanalysis by combined helical X-ray microtomographies [J]. Appl Phys Lett, 2004, 84(12): 2199-2201.

[57] M D de Jonge, C Holzner, S B Baines, et al.. Quantitative 3D elemental microtomography of cyclotella meneghiniana at 400-nm resolution [J]. P Natl Acad Sci Usa, 2010, 107(36): 15676-15680.

[58] Y Hirai, A Yoneyama, A Hisada, et al.. In vivo X-ray fluorescence microtomographic imaging of elements in single-celled fern spores [J]. Synchrotron Radiation Instrumentation, Pts 1 and 2, 2007, 879: 1345-1348.

[59] S A Kim, T Punshon, A Lanzirotti, et al.. Localization of iron in Arabidopsis seed requires the vacuolar membrane transporter VIT1 [J]. Science, 2006, 314(5803): 1295-1298.

[60] E Lombi, M D de Jonge, E Donner, et al.. Fast X-ray fluorescence microtomography of hydrated biological samples [J]. Plos One, 2011, 6(6): e20626.

[61] Q Yang, B Deng, W W Lü, et al.. Fast and accurate X-ray fluorescence computed tomography imaging with the ordered-subsets expectation maximization algorithm [J]. J Synchrotron Radiat, 2012, 19: 210-215.

[62] J W Miao, P Charalambous, J Kirz, et al.. Extending the methodology of X-ray crystallography to allow imaging of micrometre-sized non-crystalline specimens [J]. Nature, 1999, 400(6742): 342-344.

[63] I Robinson, R Harder. Coherent X-ray diffraction imaging of strain at the nanoscale [J]. Nat Mater, 2009, 8(4): 291-298.

[64] H D Jiang, C Y Song, C C Chen, et al.. Quantitative 3D imaging of whole, unstained cells by using X-ray diffraction microscopy [J]. P Natl Acad Sci Usa, 2010, 107(25): 11234-11239.

[65] G J Williams, H M Quiney, B B Dhal, et al.. Fresnel coherent diffractive imaging [J]. Phys Rev Lett, 2006, 97(2): 025506.

[66] J M Rodenburg, A C Hurst, A G Cullis, et al.. Hard-X-ray lensless imaging of extended objects [J]. Phys Rev Lett, 2007, 98(3): 034801.

[67] Y Takahashi, N Zettsu, Y Nishino, et al.. Three-dimensional electron density mapping of shape-controlled nanoparticle by focused hard X-ray diffraction microscopy [J]. Nano Letters, 2010, 10(5): 1922-1926.

[68] J W Miao, Y Nishino, Y Kohmura, et al.. Quantitative image reconstruction of GaN quantum dots from oversampled diffraction intensities alone [J]. Phys Rev Lett, 2005, 95(8): 085503.

[69] J R Fienup. Phase retrieval algorithms: a comparison [J]. Appl Opt, 1982, 21(15): 2758-2769.

[70] H Hu. Multi-slice helical CT: scan and reconstruction [J]. Med Phys, 1999, 26(1): 5-18.

[71] M Kachelrie. High performance exact spiral cone-beam CT image reconstruction [C]. 2nd Workshop on High Performance Image Reconstruction, 2009: 9-12.

[72] D Mannes, F Marone, E Lehmann, et al.. Application areas of synchrotron radiation tomographic microscopy for wood research [J]. Wood Sci Technol, 2010, 44(1): 67-84.

[73] F Forsberg, R Mooser, M Arnold, et al.. 3D micro-scale deformations of wood in bending: synchrotron radiation mu CT data analyzed with digital volume correlation [J]. J Struct Biol, 2008, 164(3): 255-262.

[74] X Wei, T Q Xiao, L X Liu, et al.. Application of X-ray phase contrast imaging to microscopic identification of Chinese medicines [J]. Phys Med Biol, 2005, 50(18): 4277-4286.

[75] 薛艳玲, 肖体乔, 吴立宏, 等. 利用X射线相衬显微研究野山参的特征结构[J]. 物理学报, 2010, 59(8); 5496-5507.

    Xue Yanling, Xiao Tiqiao, Wu Lihong, et al.. Investigation of characteristic microstructures of wild ginseng by X-ray phase contrast microscopy [J]. Acta Physica Sinica, 2010, 59(8): 5496-5507.

[76] H Y Li, X Z Yin, J Q Ji, et al.. Microstructural investigation to the controlled release kinetics of monolith osmotic pump tablets via synchrotron radiation X-ray microtomography [J]. International Journal of Pharmaceutics, 2012, 427(2): 270-275.

[77] R Liu, X Yin, H Li, et al.. Visualization and quantitative profiling of mixing and segregation of granules using synchrotron radiation X-ray microtomography and three dimensional reconstruction [J]. Int J Pharm, 2013, 445(1-2): 125-133.

[78] 彭冠云, 王玉荣, 任海青. 基于同步辐射X射线相衬显微CT技术的竹木复合材料胶合界面特征研究[J]. 光谱学与光谱分析, 2013, 33(3): 829-833.

    Peng Guanyun, Wang Yurong, Ren Haiqing. Investigation of characteristic microstructures of adhesive interface in wood/bamboo composite material by synchrotron radiation X-ray phase contrast microscopy [J]. Spectroscopy and Spectral Analysis, 2013, 33(3): 829-833.

[79] Y Wang, Y Yang, I Cole, et al.. Investigation of the microstructure of an aqueously corroded zinc wire by data-constrained modelling with multi-energy X-ray CT [J]. Materials and Corrosion, 2013, 64(3): 180-184.

[80] Y Wang, Y Yang, T Xiao, et al.. Synchrotron-based data-constrained modeling analysis of microscopic mineral distributions in limestone [J]. International Journal of Geosciences, 2013, 4(2): 344-351.

[81] 任仁安. 中药鉴定学[M]. 上海: 上海科学技术出版社, 1996.

    Ren Ren′an. Identificology of Chinese Traditional Medicine [M]. Shanghai: The Science & Technology Press in Shanghai, 1986.

[82] 楼之岑, 李胜华, 王璇. 中草药性状和显微鉴定法[M]. 北京: 北京医科大学, 中国协和医科大学联合出版社, 1997.

    Lou Zhicen, Li Shenghua, Wang Xuan. The Methods of Morphological and Microscopic Identification of Chinese Herbal Medicines [M]. Beijing: Beijing Medical University & Peking Union Medical College Press, 1997.

[83] J Qiu. China plans to modernize traditional medicine [J]. Nature, 2007, 446(7136): 590-591.

[84] 薛艳玲, 肖体乔, 杜国浩, 等. 西洋参和高丽白参的X射线显微鉴定研究[J]. 光学学报, 2008, 28(9): 1828-1832.

    Xue Yanling, Xiao Tiqiao, Du Guohao, et al.. Microscopic identification of panax quinquefolium and panax ginseng by X-ray phase contrast imaging [J]. Acta Optica Sinica, 2008, 28(9): 1828-1832.

[85] 赵中振. 中药显微鉴别图鉴[M]. 沈阳: 辽宁科学技术出版社, 2005.

    Zhao Zhongzhen. An Illustrated Microscopic Identification of Chinese Materia Medica [M]. Shenyang: Liaoning Science and Technology Publishing House, 2005.

[86] H P Yuan, H Fernandes, P Habibovic, et al.. Osteoinductive ceramics as a synthetic alternative to autologous bone grafting [J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(31): 13614-13619.

[87] S Yang, S Furman, A Tulloh. A data-constrained 3D model for material compositional microstructures [J]. Advanced Materials Research, 2008, 32: 267-270.

[88] Y S Yang, A Tulloh, I Cole, et al.. A data-constrained computational model for morphology structures [J]. Journal of the Australian Ceramics Society, 2007, 43(2): 159-164.

[89] H J Vinegar, S L Wellington. Tomographic imaging of 3-phase flow experiments [J]. Review of Scientific Instruments, 1987, 58(1): 96-107.

[90] Y S Yang, T E Gureyev, A Tulloh, et al.. Feasibility of a data-constrained prediction of hydrocarbon reservoir sandstone microstructures [J]. Measurement Science & Technology, 2010, 21(4): 047001.

[91] S Yang, J Taylor. Model and data work together to reveal microscopic structures of materials [C]. SPIE, 2010: x42055.

[92] Y S Yang, K Y Liu, S Mayo, et al.. A data-constrained modelling approach to sandstone microstructure characterisation [J]. J Petroleum Science & Technology, 2013, 105: 76-83.

[93] I Cole, T Muster, D Lau, et al.. Products formed during the interaction of seawater droplets with zinc surfaces II, results from short exposures [J]. Journal of the Electrochemical Society, 2010, 157(6): C213-C222.

肖体乔, 谢红兰, 邓彪, 杜国浩, 陈荣昌. 上海光源X射线成像及其应用研究进展[J]. 光学学报, 2014, 34(1): 0100001. Xiao Tiqiao, Xie Honglan, Deng Biao, Du Guohao, Chen Rongchang. Progresses of X-Ray Imaging Methodology and Its Applications at Shanghai Synchrotron Radiation Facility[J]. Acta Optica Sinica, 2014, 34(1): 0100001.

本文已被 22 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!