Journal of Innovative Optical Health Sciences, 2017, 10 (6): 1742005, Published Online: Jan. 10, 2019  

3D Characterization of corneal deformation using ultrasound speckle tracking

Author Affiliations
1 Department of Biomedical Engineering, The Ohio State University, Columbus, OH 43210, USA
2 Biophysics Interdisciplinary Group, The Ohio State University, Columbus, OH 43210, USA
3 Department of Ophthalmology and Visual Science, The Ohio State University, Columbus, OH 43210, USA
Abstract
The three-dimensional (3D) mechanical response of the cornea to intraocular pressure (IOP) elevation has not been previously reported. In this study, we use an ultrasound speckle tracking technique to measure the 3D displacements and strains within the central 5.5mm of porcine corneas during the whole globe inflation. Inflation tests were performed on dextran-treated corneas (treated with a 10% dextran solution) and untreated corneas. The dextran-treated corneas showed an inflation response expected of a thin spherical shell, with through-thickness thinning and in-plane stretch, although the strain magnitudes exhibited a heterogeneous spatial distribution from the central to more peripheral cornea. The untreated eyes demonstrated a response consistent with swelling during experimentation, with through-thickness expansion overriding the inflation response. The average volume ratios obtained in both groups was near 1 confirming general incompressibility, but local regions of volume loss or expansion were observed. These results suggest that biomechanical measurements in 3D provide important new insight to understand the mechanical response of ocular tissues such as the cornea.
References

[1] C. R. Ethier, M. Johnson, J. W. Ruberti , “Ocular biomechanics and biotransport,” Annu. Rev. Biomed. Eng. 6, 249–273 (2004).

[2] J. W. Ruberti, A. S. Roy, C. J. Roberts , “Corneal biomechanics and biomaterials,” Annu. Rev. Biomed. Eng., 13, 269–273 (2011).

[3] W. J. Dupps Jr., C. J. Roberts , “Effect of acute biomechanical changes on corneal curvature after photokeratectomy,” J. Refract. Surg., 17, 658–669 (2001). ISI,

[4] J. B. Randleman, M. Woodward, M. J. Lynn, R. D. Stulting , “Risk assessment for ectasia after corneal refractive surgery,” Ophthalmology 115, 37–50 (2008).

[5] T. Huseynova, G. O. Waring IV, C. J. Roberts, R. R. Krueger, M. Tomita , “Corneal biomechanics as a function of intraocular pressure and pachymetry by dynamic infrared signal and Scheimpflug imaging analysis in normal eyes,” Am. J. Ophthalmol. 157, 885–893 (2014).

[6] D. P. Pinero, N. Alcon , “In vivo characterization of corneal biomechanics,” J. Cataract Refract. Surg. 40, 870–887 (2014).

[7] B. L. Boyce, J. M. Grazier, R. E. Jones, T. D. Nguyen , “Full-field deformation of bovine cornea under constrained inflation conditions,” Biomaterials 29, 3896–3904 (2008).

[8] H. Hatami-Marbini , “Hydration-dependent viscoelastic tensile behavior of cornea,” Ann. Biomed. Eng. 42, 1740–1748 (2014).

[9] A. Elsheikh, K. Anderson , “Comparative study of corneal strip extensiometry and inflation tests,” J. R. Soc. Interface 2, 177–185 (2005).

[10] S. J. Petsche, D. Chernyak, J. Martiz, M. E. Levenston, P. M. Pinsky , “Depth-dependent transverse shear properties of the human corneal stroma,” Invest. Ophthalmol. Vis. Sci. 53, 873–880 (2012).

[11] M. Tanter, D. Touboul, J.-L. Gennisson, J. Bercoff, M. Fink , “High-resolution quantitative imaging of cornea using supersonic shear imaging,” IEEE Trans. Med. Imaging 28, 1881–1893 (2009).

[12] G. Scarcelli, S. Besner, R. Pineda, S. H. Yun , “Biomechanical characterization of keratoconus corneas ex vivo with Brillouin microscopy,” Invest. Ophthalmol. Vis. Sci. 55, 4490–4495 (2014).

[13] G. Scarcelli, S. Besner, R. Pineda, S. H. Yun , “In vivo mechanical mapping of normal and keratoconus corneas,” JAMA Ophthalmol. 133, 480–482 (2015).

[14] M. R. Ford, A. S. Roy, A. M. Rollins, W. J. Dupps Jr. , “Serial biomechanical comparison of edematous, normal, and collagen-crosslinked human donor corneas using optical coherence elastography,” J. Cataract Refract. Surg. 40, 1041–1047 (2014).

[15] J. R. Palko, J. Tang, B. Cruz Perez, X. Pan, J. Liu , “Spatially heterogenous corneal mechanical responses before and after riboflavin-ultraviolet-A crosslinking,” J. Cataract Refract. Surg. 40, 1021–1031 (2014).

[16] B. Cruz Perez, E. Pavlatos, H. J. Morris, H. Chen, X. Pan, R. T. Hart, J. Liu , “Mapping 3D strains with ultrasound speckle tracking: Method validation and initial results in porcine scleral inflation,” Ann. Biomed. Eng. 44, 2302–2312 (2016).

[17] E. Pavlatos, B. Cruz Perez, H. J. Morris, H. Chen, J. R. Palko, X. Pan, P. A. Weber, R. T. Hart, J. Liu , “Three-dimensional strains in human posterior sclera during ultrasound speckle tracking,” J. Biomed. Eng. 138, 021015 (2016).

[18] M. A. Terry, P. J. Ousley, M. L. Zjhra , “Hydration changes in cadaver eyes prepared for practice and experimental surgery,” Arch. Ophthalmol. 112, 538–543 (1994).

[19] S. Hayes, C. Boote, J. Lewis, J. Sheppard, M. Abahussin, A. J. Quantock, C. Purslow, M. Votruba, K. M. Meek , “Comparative study of fibrillar collagen arrangement in the corneas of primates and other mammals,” Anat. Rec. 290, 1542–1550 (2007).

[20] K. M. Meek, D. Leonard, C. J. Connon, S. Dennis, S. Khan , “Transparence, swelling and scarring in the corneal stroma,” Eye 17, 927–936 (2003).

Keyton Clayson, Elias Pavlatos, Yanhui Ma, Jun Liu. 3D Characterization of corneal deformation using ultrasound speckle tracking[J]. Journal of Innovative Optical Health Sciences, 2017, 10(6): 1742005.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!