光子学报, 2014, 43 (7): 0722001, 网络出版: 2014-08-18   

银镜反应制备纳米蛾眼减反结构法

Fabrication of Motheye Antireflection Nanostructure Through a Silver Mirror Reaction
作者单位
苏州大学 信息光学工程研究所,江苏 苏州 215006
摘要
为了降低光学表面的菲涅耳反射,提出了一种制备仿生减反结构的方法.利用银镜反应并结合退火处理在硬性材质基底表面制备银纳米粒子,经反应离子刻蚀工艺,在基底表面形成一层纳米蛾眼减反结构.分析了周期分布和随机分布纳米蛾眼的光学特性,实验研究了退火参量和刻蚀参量对银纳米颗粒直径、密度以及高度的影响,并在硅和石英基底上分别制备了随机减反结构.测试结果表明:硅基平均反射率小于4.5%,双面石英基透过率达98.1%.理论和实验均表明:随机分布的纳米仿生蛾眼结构具有宽光谱、广视角和高减反特性,所提出的制备方法具有简便易行、低成本、大幅面等优点,在光电器件中具有良好的潜在应用前景.
Abstract
In order to reduce the Fresnel reflection of optical surface, a method to fabricate bionic antireflective structure was proposed. Originally, silver nanoparticles were deposited on the surface of the rigid substrate based on silver mirror reaction and annealing process, and then following etching process, the motheye nanostructures with antireflective property were formed on the substrate. Optical characteristics of motheye nanostructure for random distribution and period distribution were analyzed theoretically. The results indicate that the random distributed nanostructures have a broad reflective spectrum in the visible region. In experiments, the impacts of annealing parameters and etching parameters on diameter, density and height of nanostructures were analyzed, and antireflective structures were fabricated in silicon and quartz substrate respectively. The results show that less than 4.5% in reflectance is obtained for nanostructures in silicon substrate, and the transmission is enhanced to 98.1% for nanostructures in dualside quartz substrate. In both theory and experiment, it indicates that random distributed bionic motheye structure has a high effect antireflective performance for a broad spectrum and wide angle. The proposed method has advantages of simple, lowlost and largearea fabrication of antireflective structures, and is promising for application on photoelectric device.
参考文献

[1] BERNHARD C G. Structural and functional adaptation in a visual system[J]. Endeavour, 1967, 26: 79-84.

[2] HUANG M J, YANG C R, CHOU Y C. Fabrication of nanoporous antireflection surfaces on silicon[J]. Solar Energy Materials and Solar Cells, 2008, 92: 1352-1357.

[3] GLASER T, IHRING A, MORGEN ROTH W, et al. High temperature resistant antireflective motheye structures for infrared radiation sensors[J]. Microsystem Technologies, 2005, 11(23): 86-90.

[4] KANAMORI Y, ISHIMORI M, HANE K. High efficient lightemitting diodes with antireflection subwavelength gratings[J]. IEEE Photonics Technology Letters, 2002, 14(8): 1064-1066.

[5] RAO J, WINFIELD R, KEENEY L. Motheyestructured lightemitting diodes[J]. Optics Communications, 2010, 283(11): 446-2450.

[6] GOMBERT A, LEREHENMVLLER H. Antireflective coating and method of manufacturing same: US, 6359735 B1[P].200203-19.

[7] PIVNRANTA B, SAASTAMOINEN T, KVITTZNEN M. A wideangle antireflection surface for the visible spectrum[J]. Nanotechnology, 2009, 20(37): 375301.

[8] KANAMORI Y, SASAKI M, HANE K. Broadband antireflection gratings fabricated upon silicon substrates[J]. Optics Letters, 1999, 24(20): 1422.

[9] SONG Youngmin, CHOU H J, YU J S, et al. Design of highly transparent glasses with broadband antireflective subwavelength structures[J]. Optics Express, 2010, 18(12): 13063.

[10] SONG Youngmin, BAE S Y, YU J S, et al. Closely packed and aspectratiocontrolled antireflection subwavelength gratings on GaAs using a lenslike shape transfer[J]. Optics Letters, 2009, 34(11): 1702-1704.

[11] HUANG Yifan, CHATTOPADHYAY S, JEN Y J, et al. Improved broadband and quasiomnidirectional antireflection properties with biomimetic silicon nanostructures[J]. Nature Nanotechnology, 2007, 2(12): 770-774.

[12] CHEN Yi, XU Zhida, GARTZA M R. Ultrahigh throughput silicon nanomanufacturing by simultaneous reactive ion synthesis and etching[J]. ACS Nano, 2011, 5(10): 8002-8012.

[13] ZHANG Guoming, ZHANG J, XIE G, et al. Cicada wings: a stamp from nature for nanoimprint lithography[J]. Small, 2006, 2(12): 1440.

[14] SAINIEMI L, JOKINEN V, SHAH A, et al. Nonreflecting silicon and polymer surfaces by plasma etching and replication[J]. Advanced Materials, 2011, 23(1): 122-126.

[15] TING Chiajen, CHANG Fuhyu, SHAH A, et al. Fabrication of an antireflective polymer optical film with subwavelength structures using a rolltoroll microreplication process[J]. Journal of Micromechanics and Microengineering, 2008, 18(7): 075001.

[16] GMBH H. HTARAntireflective motheye structures [EB/OL].(200112)[20130514],http://www.holotools.de/download/HTA R05%20product%20sheet%200112.pdf.

[17] CHEN Q, HUBBARD G, SHIELDS P A, et al. Broadband motheye antireflection coatings fabricated by lowcost nanoimprinting[J]. Applied Physics Letters, 2009, 94(26): 263118.

[18] WANG Hsinping, LAI K Y, LIN Y R, et al. Periodic Si nanopillar arrays fabricated by colloidal lithography and catalytic etching for broadband and omnidirectional elimination of fresnel reflection[J]. Langmuir, 2010, 26(15): 12855-12858.

[19] WANG Yandong, LV Nan, XU Hongbo, et al. Biomimetic corrugated silicon nanocone arrays for selfcleaning antireflection coatings[J]. Nano Research, 2010, 3(7): 520-527.

[20] MORHARD C, PACHOLSKI C. Antireflective motheye structures fabricated by a cheap and versatile process on various optical elements[C]. Portland, USA: 2011 11th IEEE International Conference on Nanotechnology, 2011.

[21] CHIU C H, YU Peichen, KUO H C, et al. Broadband and omnidirectional antireflection employing disordered GaN nanopillars[J]. Optics Express, 2008, 16(12): 8748-8754.

[22] SONG Y M, CHOI E S, YU J S, et al. Lightextraction enhancement of red AlGaInP lightemitting diodes with antireflective subwavelength structures[J]. Optics Express, 2009, 17(23): 20991-20997.

[23] LIN Gongru, CHANG Y C, LIU E S, et al. Low refractive index Si nanopillars on Si substrate[J]. Applied Physics Letters, 2007, 90(18): 181923.

[24] SONG Youngmin, JEONG Y, YEO C I, et al. Enhanced power generation in concentrated photovoltaics using broadband antireflective coverglasses with moth eye structures[J]. Optics Express A, 2012, 20(S6): 916.

[25] BI Yanming, SU Xiaodong, ZOU Shuai, et al. Plasmaetching fabrication and properties of black silicon by using sputtered silver nanoparticles as micromasks[J]. Thin Solid Films, 2012, 521(49): 176-180.

[26] FARZINPOUR P, SUNDAR A, CILRO Y K D, et al. Altering the dewetting characteristics of ultrathin gold and silver films using a sacrificial antimony layer[J]. Nanotechnology, 2012, 23(49): 495604.

[27] YANG Lanying, FENG Qin. Hybrid motheye structures for enhanced broadband antireflection characteristics[J]. Applied Physics Express, 2010, 3: 102602.

[28] 吴文威,徐嘉明,陈宏彦, “黑硅”表面特殊锥状尖峰结构的制备及其光学模型仿真[J].中国激光, 2011,38(6):0603029.

    WU Wenwei, XU Jiaming, CHEN Hongyan. Simulation of optical model base on microcones structure of “black silicon”[J]. Chinese Journal of Lasers, 2011, 38(6): 0603029.

[29] POITRAS D, DOBROWOLSKI J A. Toward perfect antireflection coatings[J]. Applied Optics, 2004, 43(6): 1286-1295.

[30] SONG Peng, MORRIS G M. Resonant scattering from twodimensional gratings[J]. Journal of the Optical Society of America A, 1996, 13(5): 993-1005.

[31] MOHARAM M G, POMMET D A, GRANN E B, et al. Stable implementation of the rigorous coupledwave analysis for surfacerelief gratings: enhanced transmittance matrix approach[J]. Journal of the Optical Society of America A, 1995, 12(5): 1077-1086.

[32] MOHARAM M G, GAYLORD T K, GRANN E B, et al. Formulation for stable and efficient implementation of the rigorous coupledwave analysis of binary gratings[J]. Journal of the Optical Society of America A, 1995, 12(5): 1068-1076.

[33] 鱼卫星,卢振武.锥形轮廓亚波长二维表面浮雕结构的矢量衍射特性[J]. 光子学报, 2001, 30(3): 331-335.

    YU Weixing, LU Zhenwu. Vector diffracted characteristic tapered twodimensional subwavelength surfacerelief structure[J]. Acta Photonica Sinica, 2001, 30(3): 331-335.

[34] LEHR D, HELGRT M, SUNDERMANN M, et al. Simulating different manufactured antireflective subwavelength structures considering the influence of local topographic variations[J]. Optics Express, 2010, 18(23): 23878.

董晓轩, 申溯, 陈林森. 银镜反应制备纳米蛾眼减反结构法[J]. 光子学报, 2014, 43(7): 0722001. DONG Xiaoxuan, SHEN Su, CHEN linsen. Fabrication of Motheye Antireflection Nanostructure Through a Silver Mirror Reaction[J]. ACTA PHOTONICA SINICA, 2014, 43(7): 0722001.

本文已被 2 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!