中国激光, 2015, 42 (4): 0413003, 网络出版: 2015-02-11   

基于光散射的实时气溶胶粒子形状识别技术研究

Research on Real-Time Aerosol Particle Shape Identification Based on Scattered Light Detection
作者单位
1 中国科学院大学, 北京 100049
2 中国科学院上海光学与精密机械研究所信息光学与光电技术实验室, 上海 201800
3 上海市大恒光学精密机械有限公司, 上海 201800
摘要
利用米氏散射理论和时域有限差分(FDTD)软件计算了不同大小、形状和折射率粒子的前向散射光场分布,分析了通过光强度分布和非对称因子反演粒子相关信息、区分粒形的可行性。研制了一台利用增强型CCD 相机在线采集单个气溶胶粒子在5°~19°前向散射角范围内光场图样的装置。8 μm 粒径的聚苯乙烯球形粒子散射图样实验结果与理论计算对比较为吻合,验证了该装置的有效性。应用该装置对不同形状的气溶胶粒子进行检测,结果表明能够从散射图像和反演计算结果区分出球形、杆状和其他形状粒子。
Abstract
The scattered light distributions of particles with different parameters of size, shape and refractive index are simulated with Mie theory and finite difference time domain (FDTD) software. The feasibility of particle shape inversed method with scattering intensity distribution and asymmetrical factor is discussed. Based on this result, a real- time aerosol particle shape identification device (RAPSID) is developed. It can collect the forward scattered light pattern with scattering angle from 5 to 19 degree by an ICCD camera. The pattern of an 8 μm polystyrene sphere particle is approximately consistent with the result of Mie scattering calculation, which verifies the accuracy of RAPSID. The test results of RAPSID for aerosol particles with different sizes show that particles of spherical, rhabdoid and other shapes can be distinguished from scattering image and inversed calculation results.
参考文献

[1] 保罗巴伦, 克劳斯维勒克. 气溶胶测量原理、技术及应用(第二版)[M]. 北京: 化学工业出版社, 2006.

    Paul A Baron, Klaus Willeke. Aerosol Measurement Principles, Techniques, and Applications, (Second Edition) [M]. Beijing: Chemical Industry Press, 2006.

[2] 张璐. 长三角背景区域大气气溶胶吸湿增长特性观测研究[D]. 北京: 中国气象科学研究院, 2014.

    Zhang Lu. Observation Study of Humidity Effects on Aerosol Light Scattering at a Regional Background Site in the Yangtze Delta Region[D]. Beijing: Chinese Academy of Meteorological Sciences, 2014.

[3] E Hirst, P H Kaye. Experimental and theoretical light scattering profiles from spherical and non-spherical particles[J]. Journal of Geophysical Research Atmospheres, 1996, 101(D14): 19231-19235.

[4] K B Aptowicz, R G Pinnick, S C Hill, et al.. Optical scattering patterns from single urban aerosol particles at Adelphi, Maryland, USA: A classification relating to particle morphologies[J]. Journal of Geophysical Research Atmospheres, 2006, 111(d12): d12212.

[5] Y L Pan, S C Hill, R G Pinnick, et al.. Dual excitation wavelength fluorescence spectra and elastic scattering for differentiation of single airborne pollen and fungal particles[J]. Atmospheric Environment, 2011, 45(8): 1555-1563.

[6] D Kiselev, L Bonacina, J P Wolf. Individual bioaerosol particle discrimination by multi- photon excited fluorescence[J]. Optics Express, 2011, 19(24): 24516-24521.

[7] E Gard, J E Mayer, B D Morrical, et al.. Real-time analysis of individual atmospheric aerosol particles: design and performance of a portable ATOFMS[J]. Analytical Chemistry, 1997, 69(20): 4083-4091.

[8] M Narukawa, Y Matsumi, J Matsumoto, et al.. Real-time analysis of secondary organic aerosol particles formed from cyclohexene ozonolysis using a laser-ionization single-particle aerosol mass spectrometer[J]. Analytical Science, 2007, 23(5): 507-512.

[9] 黄惠杰, 赵永凯, 任冰强, 等. 尘埃粒子的半导体激光散射测量[J]. 中国激光, 2002, 29(12): 1117-1121.

    Huang Huijie, Zhao Yongkai, Ren bingqiang, et al.. Aerosol particle measurement by laser diode light scattering[J]. Chinese J Lasers, 2002, 29(12): 1117-1121.

[10] 孙晗, Grazia Lamanna, Bernhard Weigand. 小角弹性光散射粒径测量技术与准确性验证[J]. 中国激光, 2013, 40(3): 0308004.

    Sun Han, Grazia Lamanna, Bernhard Weigand. Measurement technique and verification of accuracy for particle sizing by low angle elastic light scattering[J]. Chinese J Lasers, 2013, 40(3): 0308004.

[11] 李凡, 徐志凯. 医学微生物学[M]. 北京: 人民卫生出版社, 2001.

    Li Fan, Xu Zhikai. Medical Microbiology[M]. Beijing: People′s Medical Publishing House, 2001.

[12] P H Kaye. Spatial light-scattering analysis as a means of characterizing and classifying non-spherical particles[J]. Measurement Science & Technology, 1998, 9(2): 141-149.

[13] P H Kaye, E Hirst, J M Clark, et al.. Airborne particle shape and size classification from spatial light-scattering profiles[J]. Journal of Aerosol Science, 1992, 23(6): 597-611.

[14] C Stopford, P H Kaye, R S Greenaway, et al.. Real-time detection of airborne asbestos by light scattering from magnetically realigned fibers[J]. Optics Express, 2013, 21(9): 11356-11367.

[15] Y L Pan, K B Aptowicz, R K Chang, et al.. Characterizing and monitoring respiratory aerosols by light scattering[J]. Optics Letters, 2003, 28(8): 589-591.

[16] Y L Pan, M J Berg, S Zhang, et al.. Measurement and autocorrelation analysis of two-dimensional light-scattering patterns from living cells for label-free classification[J]. Cytometry Part A, 2011, 79A(4): 284-292.

[17] 邵士勇, 黄印博, 饶瑞中. 基于成像法的气溶胶粒形和散射分析仪[J]. 光子学报, 2009, 38(3): 704-708.

    Shao Shiyong, Huang Yinbo, Rao Ruizhong. Aerosol particle shape and scattering analyzer based on imaging[J]. Acta Photonica Sinica, 2009, 38(3): 704-708.

[18] 冯春霞, 黄立华, 周光超, 等. 单分散生物气溶胶光散射特性的计算与分析[J]. 中国激光, 2010, 37(10): 2592-2598.

    Feng Chunxia, Huang Lihua, Zhou Guangchao, et al.. Computation and analysis of light scattering by monodisperse biological aerosols[J]. Chinese J Lasers, 2010, 37(10): 2592-2598.

[19] H E Redmond, K D Dial, J E Thompson. Light scattering and absorption by wind blown dust: theory, measurement and recent data [J]. Aeolian Research, 2010, 2(1): 5-26.

[20] 王亚伟. 光散射理论及其应用技术[M]. 北京: 科学出版社, 2013.

    Wang Yawei. Light Scattering Theory and Application Technology[M]. Beijing: Science Press, 2013.

[21] Philip Lavender. MiePlot v4305[OL]. http://www.philiplaven.com/mieplot.htm [2014-9-5].

[22] 米先科, 特拉维斯, 拉齐斯, 等. 微粒的光散射、吸收和发射[M]. 北京: 国防工业出版社, 2013.

    Michael I Mishchenko, Larry D Travis, Andrew A Lacis, et al.. Scattering, Absorption, and Emission of Light by Small Particles[M]. Beijing: National Defense Industry Press, 2013.

[23] P H Kaye, E Hirst, Z W Thomas. Neural-network-based spatial light-scattering instrument for hazardous airborne fiber detection [J]. Applied Optics, 1997, 36(24): 6149-6156.

[24] G F Crosta, Y L Pan, G Videen, et al.. Discrimination of airborne material particles from light scattering (TAOS) patterns[C]. SPIE, 2013, 8723: 872318.

[25] Chunxia Feng, Lihua Huang, Jianbo Wang, et al.. Theoretical studies on bioaerosol particle size and shape measurement from spatial scattering profiles[J]. Chin Opt Lett, 2011, 9(9): 092901.

[26] 张佩, 赵永凯, 杨巍, 等. 亚微米粒子虚拟冲击器的研制[J]. 中国激光, 2014, 41(1): 0116002.

    Zhang Pei, Zhao Yongkai, Yang Wei, et al.. Development of a virtual impactor for submicron particles [J]. Chinese J Lasers, 2014, 41(1): 0116002.

[27] A K Singh, A M Bettasso, E Bae, et al.. Laser optical sensor, a label-free on-plate salmonella enterica colony detection tool[J]. mBio, 2014, 5(1): e01019-13.

卜一川, 赵永凯, 陈正岩, 张佩, 黄惠杰. 基于光散射的实时气溶胶粒子形状识别技术研究[J]. 中国激光, 2015, 42(4): 0413003. Bu Yichuan, Zhao Yongkai, Chen Zhengyan, Zhang Pei, Huang Huijie. Research on Real-Time Aerosol Particle Shape Identification Based on Scattered Light Detection[J]. Chinese Journal of Lasers, 2015, 42(4): 0413003.

本文已被 7 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!