中国激光, 2020, 47 (7): 0701001, 网络出版: 2020-07-10   

通信波段半导体分布反馈激光器 下载: 4312次内封面文章特邀综述

Review of Semiconductor Distributed Feedback Lasers in the Optical Communication Band
陆丹 1,2,3杨秋露 1,2,3王皓 1,2,3贺一鸣 1,2,3齐合飞 1,2,3王欢 1,2,3赵玲娟 1,2,3王圩 1,2,3
作者单位
1 中国科学院半导体研究所半导体材料科学重点实验室, 北京 100083
2 中国科学院大学材料与光电研究中心, 北京 100049
3 低维半导体材料与器件北京市重点实验室, 北京 100083
引用该论文

陆丹, 杨秋露, 王皓, 贺一鸣, 齐合飞, 王欢, 赵玲娟, 王圩. 通信波段半导体分布反馈激光器[J]. 中国激光, 2020, 47(7): 0701001.

Lu Dan, Yang Qiulu, Wang Hao, He Yiming, Qi Hefei, Wang Huan, Zhao Lingjuan, Wang Wei. Review of Semiconductor Distributed Feedback Lasers in the Optical Communication Band[J]. Chinese Journal of Lasers, 2020, 47(7): 0701001.

参考文献

[1] Hall R N, Fenner G, Kingsley J D, et al. Coherent light emission from GaAs junctions[J]. Physical Review Letters, 1962, 9(9): 366-368.

[2] Nathan M, Dumke W P, Burns G, et al. Stimulated emission of radiation from GaAs p-n junctions[J]. Applied Physics Letters, 1962, 1(3): 62-64.

[3] Kao K C, Hockham G A. Dielectric-fibre surface waveguides for optical frequencies[J]. Proceedings of the Institution of Electrical Engineers, 1966, 113(7): 1151-1158.

[4] Matsui Y, Schatz R, Pham T, et al. 55 GHz bandwidth distributed reflector laser[J]. Journal of Lightwave Technology, 2017, 35(3): 397-403.

[5] Sasada N, Nakajima T, Sekino Y, et al. Wide-temperature-range (25-80 ℃) 53-Gbaud PAM4 (106 Gb/s) operation of 1.3 μm directly modulated DFB lasers for 10 km transmission[J]. Journal of Lightwave Technology, 2019, 37(7): 1686-1689.

[6] Okai M, Suzuki M, Taniwatari T. Strained multiquantum-well corrugation-pitch-modulated distributed feedback laser with ultranarrow (3.6 kHz) spectral linewidth[J]. Electronics Letters, 1993, 29(19): 1696-1697.

[7] Doussiere P, Shieh C L. DeMars S, et al. Very high-power 1310 nm InP single mode distributed feed back laser diode with reduced linewidth[J]. Proceedings of SPIE, 2007, 6485: 64850G.

[8] Kogelnik H, Shank C V. Stimulated emission in a periodic structure[J]. Applied Physics Letters, 1971, 18(4): 152-154.

[9] Kogelnik H, Shank C V. Coupled-wave theory of distributed feedback lasers[J]. Journal of Applied Physics, 1972, 43(5): 2327-2335.

[10] Nakamura M, Yariv A, Yen H W, et al. Optically pumped GaAs surface laser with corrugation feedback[J]. Applied Physics Letters, 1973, 22(10): 515-516.

[11] Haus H, Shank C. Antisymmetric taper of distributed feedback lasers[J]. IEEE Journal of Quantum Electronics, 1976, 12(9): 532-539.

[12] Akiba S, Usami M, Utaka K. 1.5 μm λ/4-shifted InGaAsP/InP DFB lasers[J]. Journal of Lightwave Technology, 1987, 5(11): 1564-1573.

[13] Soda H, Kotaki Y, Sudo H, et al. Stability in single longitudinal mode operation in GaInAsP/InP phase-adjusted DFB lasers[J]. IEEE Journal of Quantum Electronics, 1987, 23(6): 804-814.

[14] Agrawal G P, Geusic J E, Anthony P J. Distributed feedback lasers with multiple phase‐shift regions[J]. Applied Physics Letters, 1988, 53(3): 178-179.

[15] Okai M, Chinone N, Taira H, et al. Corrugation-pitch-modulated phase-shifted DFB laser[J]. IEEE Photonics Technology Letters, 1989, 1(8): 200-201.

[16] Huang Y D, Sato K, Okuda T, et al. Low-chirp and external optical feedback resistant characteristics in λ/8 phase-shifted distributed-feedback laser diodes under direct modulation[J]. IEEE Journal of Quantum Electronics, 2002, 38(11): 1479-1484.

[17] Luo Y, Nakano Y, Tada K, et al. Purely gain-coupled distributed feedback semiconductor lasers[J]. Applied Physics Letters, 1990, 56(17): 1620-1622.

[18] NakamuraK, MiyamuraS, SekikawaR, et al.Optical feedback-tolerant 1.3 μm gain-coupled DFB lasers for isolator-free micro-BOSA modules[C]∥OFC/NFOEC 2007 - 2007 Conference on Optical Fiber Communication and the National Fiber Optic Engineers Conference. 25-29 March 2007, Anaheim, CA, USA.New York: IEEE Press, 2007: 1- 3.

[19] Miller L M, Verdeyen J T, Coleman J J, et al. A distributed feedback ridge waveguide quantum well heterostructure laser[J]. IEEE Photonics Technology Letters, 1991, 3(1): 6-8.

[20] Guo W H, Lu Q Y, Nawrocka M, et al. Integrable slotted single-mode lasers[J]. IEEE Photonics Technology Letters, 2012, 24(8): 634-636.

[21] Coldren LA, Corzine SW, Mašanovic ML. Diode lasers and photonic integrated circuits[M]. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2012.

[22] Thibeault B J, Bertilsson K, Hegblom E R, et al. High-speed characteristics of low-optical loss oxide-apertured vertical-cavity lasers[J]. IEEE Photonics Technology Letters, 1997, 9(1): 11-13.

[23] Tatham M C, Lealman I F, Seltzer C P, et al. Resonance frequency, damping, and differential gain in 1.5 μm multiple quantum-well lasers[J]. IEEE Journal of Quantum Electronics, 1992, 28(2): 408-414.

[24] Fukamachi T, Adachi K, Shinoda K, et al. Wide temperature range operation of 25-Gb/s 1.3 μm InGaAlAs directly modulated lasers[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2011, 17(5): 1138-1145.

[25] YamamotoT. High-speed directly modulated lasers[C]∥Optical Fiber Communication Conference. Washington, D.C.: OSA, 2012.

[26] Morton P A, Logan R A, Tanbun-Ek T, et al. 25 GHz bandwidth 1.55 μm GaInAsP p-doped strained multiquantum-well lasers[J]. Electronics Letters, 1992, 28(23): 2156.

[27] Shimizu J, Yamada H, Murata S, et al. Optical-confinement-factor dependencies of the K factor, differential gain, and nonlinear gain coefficient for 1.55 μm InGaAs/InGaAsP MQW and strained-MQW lasers[J]. IEEE Photonics Technology Letters, 1991, 3(9): 773-776.

[28] Chiu L, Yariv A. Auger recombination in quantum-well InGaAsP heterostructure lasers[J]. IEEE Journal of Quantum Electronics, 1982, 18(10): 1406-1409.

[29] Childs G N, Brand S, Abram R A. Intervalence band absorption in semiconductor laser materials[J]. Semiconductor Science and Technology, 1986, 1(2): 116-120.

[30] Matsui Y, Murai H, Arahira S, et al. 30-GHz bandwidth 1.55 μm strain-compensated InGaAlAs-InGaAsP MQW laser[J]. IEEE Photonics Technology Letters, 1997, 9(1): 25-27.

[31] TsuchiyaT, TakemotoD, TaikeA, et al.Large number of periods in highly strained InGaAlAs/InGaAlAs MQW structures grown by metalorganic vapor-phase epitaxy[C]∥Conference Proceedings. Eleventh International Conference on Indium Phosphide and Related Materials (IPRM'99) (Cat. No.99CH36362). 16-20 May 1999, Davos, Switzerland.New York: IEEE Press, 1999: 47- 50.

[32] LuH, BlaauwC, BenyonB, et al.High-power and high-speed performance of gain-coupled 1.3 μm strained-layer MQW DFB lasers[C]∥Proceedings of IEEE 14th International Semiconductor Laser Conference. 19-23 Sept. 1994, Maui, HI, USA.New York: IEEE Press, 1994: 51- 52.

[33] Nakahara K, Wakayama Y, Kitatani T, et al. 1.3 μm InGaAlAs asymmetric corrugationpitch- modulated DFB lasers with high mask margin at 28 Gbit/S[J]. Electronics Letters, 2014, 50(13): 947-948.

[34] ChangF. Datacenter connectivity technologies: principles and practice[M]. Denmark: River Publishers, 2018.

[35] MatsuiY, LiW, RobertsH, et al.Transceiver for NG-PON2: wavelength tunablity for burst mode TWDM and point-to-point WDM[C]∥2016 Optical Fiber Communications Conference and Exhibition (OFC). 20-24 March 2016, Anaheim, CA, USA. New York: IEEE Press, 2016: 1- 3.

[36] Wang D L, Zhou N, Zhang J, et al. High-temperature and high-speed operation of 1.3 μm uncooled AlGaInAs-InP MQW-DFB lasers[J]. Proceedings of SPIE, 2005, 6020: 60201U.

[37] Shim J I, Komori K, Arai S, et al. Lasing characteristics of 1.5 μm GaInAsP-InP SCH-BIG-DR lasers[J]. IEEE Journal of Quantum Electronics, 1991, 27(6): 1736-1745.

[38] YamamotoT, UetakeA, OtsuboK, et al.Uncooled 40-Gbps direct modulation of 1.3-μm-wavelength AlGaInAs distributed reflector lasers with semi-insulating buried-heterostructure[C]∥22nd IEEE International Semiconductor Laser Conference. 26-30 Sept. 2010, Kyoto, Japan.New York: IEEE Press, 2010: 193- 194.

[39] Nakahara K, Wakayama Y, Kitatani T, et al. Directmodulation at 56 and 50 Gb/s of 1.3 μm InGaAlAs ridge-shaped-BH DFB lasers[J]. IEEE Photonics Technology Letters, 2015, 27(5): 534-536.

[40] SimoyamaT, MatsudaM, OkumuraS, et al.50 Gbps direct modulation using 1.3 μm AlGaInAs MQW distribute-reflector lasers[C]∥2012 38th European Conference and Exhibition on Optical Communications. 16-20 Sept. 2012, Amsterdam, Netherlands.New York: IEEE Press, 2012: 1- 3.

[41] Kobayashi W, Ito T, Yamanaka T, et al. 50-Gb/s direct modulation of a 1.3 μm InGaAlAs-based DFB laser with a ridge waveguide structure[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2013, 19(4): 1500908.

[42] Tager A A, Petermann K. High-frequency oscillations and self-mode locking in short external-cavity laser diodes[J]. IEEE Journal of Quantum Electronics, 1994, 30(7): 1553-1561.

[43] Radziunas M, Glitzky A, Bandelow U, et al. Improving the modulation bandwidth in semiconductor lasers by passive feedback[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2007, 13(1): 136-142.

[44] Bauer S, Brox O, Kreissl J, et al. Optical microwave source[J]. Electronics Letters, 2002, 38(7): 334-335.

[45] Brox O, Bauer S, Radziunas M, et al. High-frequency pulsations in DFB lasers with amplified feedback[J]. IEEE Journal of Quantum Electronics, 2003, 39(11): 1381-1387.

[46] Troppenz U, Kreissl J, et al. 40 Gbit/s directly modulated lasers: physics and application[J]. Proceedings of SPIE, 2011, 7953: 79530F.

[47] Yu L Q, Guo L, Lu D, et al. Modulated bandwidth enhancement in an amplified feedback laser[J]. Chinese Optics Letters, 2015, 13(5): 051401.

[48] Mao Y F, Ren Z L, Guo L, et al. Modulation bandwidth enhancement in distributed reflector laser based on identical active layer approach[J]. IEEE Photonics Journal, 2018, 10(3): 1-8.

[49] 郭菲. 应用于下一代数据中心的单片集成高速光发射芯片的研究[D]. 北京: 中国科学院大学, 2016.

    GuoF. Investigation of monolithically integrated high-speed photonic chip for next generation datacom applications[D]. Beijing: University of Chinese Academy of Sciences, 2016.

[50] 王皓. 高性能高速直调激光器与大功率DFB激光器的研究[D]. 北京: 中国科学院大学, 2019.

    WangH. Research on high performance high speed directly modulated DFB laser and high power DFB laser[D]. Beijing: University of Chinese Academy of Sciences, 2019.

[51] Chen T R, Ungar J, Yeh X L, et al. Very large bandwidth strained MQW DFB laser at 1.3 μm[J]. IEEE Photonics Technology Letters, 1995, 7(5): 458-460.

[52] Steinhagen F, Lösch R, Hartnagel H L, et al. AlGaInAs/InP 1.5 μm MQW DFB laser diodes exceeding 20 GHz bandwidth[J]. Electronics Letters, 1995, 31(4): 274-275.

[53] TroppenzU, KreisslJ. 40 Gb/s directly modulated InGaAsP passive feedback DFB laser[C]∥32nd European Conference and Exhibition on Optical Communications (ECOC), Sep. 24-28, Cannes France. New York: IEEE, 2006, ( 1): 2- 3.

[54] Xie L, Man J W, Wang B J, et al. 24-GHz directly modulated DFB laser modules for analog applications[J]. IEEE Photonics Technology Letters, 2012, 24(5): 407-409.

[55] Matsui Y, Pham T, Sudo T, et al. 28-Gbaud PAM4 and 56-Gb/s NRZ performance comparison using 1310 nm Al-BH DFB laser[J]. Journal of Lightwave Technology, 2016, 34(11): 2677-2683.

[56] Slipchenko S O, Vinokurov D A, Pikhtin N A, et al. Ultralow internal optical loss in separate-confinement quantum-well laser heterostructures[J]. Semiconductors, 2004, 38(12): 1430-1439.

[57] Garbuzov D, Xu L, Forrest S R, et al. 1.5 μm wavelength, SCH-MQW InGaAsP/InP broadened-waveguide laser diodes with low internal loss and high output power[J]. Electronics Letters, 1996, 32(18): 1717-1719.

[58] Chen T R, Hsin W. Very high power DFB CW light source at 1550 nm for high-performance supertrunking[J]. Proceedings of SPIE, 1998, 3547: 24-36.

[59] Shterengas L, Menna R, Trussell W, et al. Effect of heterobarrier leakage on the performance of high-power 1.5 μm InGaAsP multiple-quantum-well lasers[J]. Journal of Applied Physics, 2000, 88(5): 2211-2214.

[60] Han I K, Cho S H. Heim P J S, et al. Dependence of the light-current characteristics of 1.55 μm broad-area lasers on different p-doping profiles[J]. IEEE Photonics Technology Letters, 2000, 12(3): 251-253.

[61] Yong Y S, Wong H Y, Yow H K, et al. Systematic study on the confinement structure design of 1.5 μm InGaAlAs/InP multiple-quantum-well lasers[J]. Laser Physics, 2010, 20(4): 811-815.

[62] NagashimaY, OnukiS, ShimoseY, et al.1480 nm pump laser with asymmetric quaternary cladding structure achieving high output power of >1.2 W with low power consumption[C]∥2004 IEEE 19th International Semiconductor Laser Conference. 21-25 Sept. 2004, Matsue-shi, Japan.New York: IEEE Press, 2004: 47- 48.

[63] Shih M H, Kapre R M, Logan R A, et al. Alignment-relaxed 1.55 μm multiquantum well lasers fabricated using standard buried heterostructure laser processes[J]. Electronics Letters, 1995, 31(13): 1058-1060.

[64] Faugeron M, Tran M, Parillaud O, et al. High-power tunable dilute mode DFB laser with low RIN and narrow linewidth[J]. IEEE Photonics Technology Letters, 2013, 25(1): 7-10.

[65] Borchert B. Spatial hole-burning effects in distributed-feedback semiconductor lasers[J]. Proceedings of SPIE, 1992, 1523: 194-199.

[66] StegmüllerB, BorchertT, Goldsmith, J, et al. Complex coupled distributed feedback lasers: structures and recent progress in performance[C]∥Conference on Lasers and Electro-Optics, May 21-26, 1995, Baltimore, Maryland, United States. Washington: Optical Society of America, 1995: CThK1.

[67] Whiteaway J E A, Thompson G H B, Collar A J, et al. The design assessment of λ/4 phase-shifted DFB laser structures[J]. IEEE Journal of Quantum Electronics, 1989, 25(6): 1261-1279.

[68] Wenzel H, Bugge F, Dallmer M, et al. Fundamental-lateral mode stabilized high-power ridge-waveguide lasers with a low beam divergence[J]. IEEE Photonics Technology Letters, 2008, 20(3): 214-216.

[69] MennaR, KomissarovA, MaiorovM, et al.High power 1550 nm distributed feedback lasers with 440 mW CW output power for telecommunication applications[C]∥Technical Digest. Summaries of Papers Presented at the Conference on Lasers and Electro-Optics. Postconference Technical Digest (IEEE Cat. No.01CH37170). 11-11 May 2001, Baltimore, MD, USA.New York: IEEE Press, 2001: CPD12-CP1.

[70] Garbuzov D Z, Maiorov M A, Menna R J, et al. High-power 1300-nm Fabry-Perot and DFB ridge-waveguide lasers[J]. Proceedings of SPIE, 2002, 4651: 92-100.

[71] WangH, Zhang RK, KanQ, et al. High-power wide-bandwidth 1.55-μm directly modulated DFB lasers for free space optical communications[C]∥Conference on Lasers and Electro-Optics. Washington, D.C.: OSA, 2019.

[72] Chen T R, Ungar J, Iannelli J, et al. High power operation of InGaAsP/InP multiquantum well DFB lasers at 1.55 μm wavelength[J]. Electronics Letters, 1996, 32(10): 898.

[73] Sugg AR, Abeles JH, Braun AM, et al.Design and characterization of 200-mW-class distributed feedback lasers at 1.55 μm[C]∥Conference Proceedings. 2000 International Conference on Indium Phosphide and Related Materials (Cat. No.00CH37107). 14-18 May 2000, Williamsburg, VA, USA.New York: IEEE Press, 2000: 282- 285.

[74] HuangJ, LuH, Su H. Ultra-highpower ( 180mW), linearly polarized DFB lasers with narrow spectral linewidth ( 100kHz) for1550nm WDM+100 km long-haul transmission[C]∥International Conference on Engineering and Meta-Engineering, Apr. 6-9, 2010, Orlando, FL, USA. Florida: Int Inst Informatics &Systemics, 31- 35.

[75] Kojima K, Kyuma K. Analysis of the spectral linewidth of distributed feedback laser diodes[J]. Electronics Letters, 1984, 20(21): 869-871.

[76] Liou K, Dutta N K, Burrus C. Linewidth‐narrowed distributed feedback injection lasers with long cavity length and detuned Bragg wavelength[J]. Applied Physics Letters, 1987, 50(9): 489-491.

[77] Kunii T, Matsui Y. Narrow spectral linewidth semiconductor lasers[J]. Optical and Quantum Electronics, 1992, 24(7): 719-735.

[78] Schawlow A L, Townes C H. Infrared and optical masers[J]. Physical Review, 1958, 112(6): 1940-1949.

[79] Fleming M W, Mooradian A. Fundamental line broadening of single-mode (GaAl)As diode lasers[J]. Applied Physics Letters, 1981, 38(7): 511-513.

[80] Henry C. Theory of the phase noise and power spectrum of a single mode injection laser[J]. IEEE Journal of Quantum Electronics, 1983, 19(9): 1391-1397.

[81] Yokouchi N, Yamanaka N, Iwai N, et al. Tensile-strained GaInAsP-InP quantum-well lasers emitting at 1.3 μm[J]. IEEE Journal of Quantum Electronics, 1996, 32(12): 2148-2155.

[82] Kikuchi K, Okoshi T. Measurement of FMnoise, AM noise, and field spectra of 1.3 μm InGaAsP DFB lasers and determination of the linewidth enhancement factor[J]. IEEE Journal of Quantum Electronics, 1985, 21(11): 1814-1818.

[83] Dutta N K, Wynn J D, Sivco D L, et al. Linewidth enhancement factor in strained quantum well lasers[J]. Applied Physics Letters, 1990, 56(23): 2293-2294.

[84] Aoki M, Uomi K, Tsuchiya T, et al. Quantum size effect on longitudinal spatial hole burning in MQW λ/4-shifted DFB lasers[J]. IEEE Journal of Quantum Electronics, 1991, 27(6): 1782-1789.

[85] YamazakiH, SasakiT, KidaN, et al. 250 kHz linewidth operation in long cavity 1.5 μm multiple quantum well DFB-LDs with reduced linewidth enhancement factor[C]∥Optical Fiber Communication. Washington, D.C.: OSA, 1990.

[86] KotakiY, FujiiT, OgitaS, et al. Narrow linewidth and wavelength tunable multiple quantum well λ/4 shifted distributed feedback laser[C]∥Optical Fiber Communication. Washington, D.C.: OSA, 1990.

[87] PanX, OlesenH, TromborgB. Linewidth and FM noise spectrum of DFB lasers including spatial holeburning and nonlinear gain[C]∥12th IEEE International Conference on Semiconductor Laser. 9-14 Sept. 1990, Davos, Switzerland.New York: IEEE Press, 1990: 118- 119.

[88] Ogita S, Kotaki Y, Kihara K, et al. Dependence of spectral linewidth on cavity length and coupling coefficient in DFB laser[J]. Electronics Letters, 1988, 24(10): 613-614.

[89] Kojima K, Kyuma K, Nakayama T. Analysis of the spectral linewidth of distributed feedback laser diodes[J]. Journal of Lightwave Technology, 1985, 3(5): 1048-1055.

[90] Ogita S, Kotaki Y, Matsuda M, et al. Long-cavity, multiple-phase-shift, distributed feedback laser for linewidth narrowing[J]. Electronics Letters, 1989, 25(10): 629-630.

[91] Okai M, Tsuchiya T, Uomi K, et al. Corrugation-pitch modulated MQW-DFB lasers with narrow spectral linewidth[J]. IEEE Journal of Quantum Electronics, 1991, 27(6): 1767-1772.

[92] Telkkälä J, Viheriälä J, Bister M, et al. Narrow linewidth 1.55 μm laterally-coupled DFB lasers fabricated using nanoimprint lithography[J]. IPRM 2011-23rd International Conference on Indium Phosphide and Related Materials, 2011: 1-4.

[93] Hou L, Haji M, Akbar J, et al. Narrow linewidth laterally coupled 1.55 μm AlGaInAs/InP distributed feedback lasers integrated with a curved tapered semiconductor optical amplifier[J]. Optics Letters, 2012, 37(21): 4525-4527.

[94] Dridi K, Benhsaien A, Zhang J, et al. Narrow linewidth 1550 nm corrugated ridge waveguide DFB lasers[J]. IEEE Photonics Technology Letters, 2014, 26(12): 1192-1195.

[95] Kikuchi K. Precise estimation of linewidth reduction in wavelength-detuned DFB semiconductor lasers[J]. Electronics Letters, 1988, 24(2): 80-81.

[96] Ogita S, Hirano M, Soda H, et al. Dependence of spectrallinewidth of DFB lasers on facet reflectivity[J]. Electronics Letters, 1987, 23(7): 347.

[97] Zhao YG, Luo XN, TranD, et al.High-power and low-noise DFB semiconductor lasers for RF photonic links[C]∥IEEE Avionics. 11-13 Sept. 2012, Cocoa Beach, FL, USA.New York: IEEE Press, 2012: 66- 67.

[98] Schreiner R, Wiedmann J, Coenning W, et al. Fabrication approach for antiphase narrow linewidth complex coupled 1.55 μm DFB lasers[J]. Electronics Letters, 1999, 35(2): 146-148.

[99] Huang JS, SuH, He XG, et al.Ultra-high power, low RIN and narrow linewidth lasers for C-band DWDM +100 km fiber optic link[C]∥IEEE Photonic Society 24th Annual Meeting. 9-13 Oct. 2011, Arlington, VA, USA.New York: IEEE Press, 2011: 212- 213.

[100] Beuchet G, Mimoun M, et al. Ultra high power, ultra low RIN up to 20 GHz 1.55 μm DFB AlGaInAsP laser for analog applications[J]. Proceedings of SPIE, 2010, 7616: 76160Y.

[101] Faugeron M, Benazet B, Maho A, et al. High-performance DFB laser module for space applications: the FP7 HiPPO achievements from chip fabrication to system validation[J]. Proceedings of SPIE, 2019, 1118: 111803J.

陆丹, 杨秋露, 王皓, 贺一鸣, 齐合飞, 王欢, 赵玲娟, 王圩. 通信波段半导体分布反馈激光器[J]. 中国激光, 2020, 47(7): 0701001. Lu Dan, Yang Qiulu, Wang Hao, He Yiming, Qi Hefei, Wang Huan, Zhao Lingjuan, Wang Wei. Review of Semiconductor Distributed Feedback Lasers in the Optical Communication Band[J]. Chinese Journal of Lasers, 2020, 47(7): 0701001.

本文已被 12 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!