刘宇翔 1,2,3张瑞康 1,2,3王欢 1,2,3陆丹 1,2,3,*赵玲娟 1,2,3
作者单位
摘要
1 中国科学院半导体研究所 材料重点实验室,北京 100083
2 中国科学院大学 材料与光电研究中心,北京 100049
3 低维半导体材料与器件北京市重点实验室,北京 100083
针对高速光采样、光频梳以及光通信系统应用,研制了1.5 μm波段高重频超短脉冲输出半导体锁模激光器。基于AlGaInAs/InP材料体系,采用两段式单片集成锁模结构,引入稀释波导结构,综合降低光限制因子、提升材料饱和能量、降低腔内损耗,从而降低有源区色散对脉冲的影响并提升脉冲峰值功率,最终在1.5 μm波段实现了重复频率24.3 GHz、脉冲宽度680 fs的亚皮秒光脉冲输出,脉冲光谱宽度为7.2 nm,脉冲峰值能量为525 mW。
半导体激光器 锁模激光器 单片集成 超短脉冲 稀释波导 Semiconductor lasers Mode-locked lasers Monolithic integrated circuit Ultra-short pulse Dilution waveguide 
光子学报
2022, 51(2): 0251211
陆丹 1,2,3杨秋露 1,2,3王皓 1,2,3贺一鸣 1,2,3[ ... ]王圩 1,2,3
作者单位
摘要
1 中国科学院半导体研究所半导体材料科学重点实验室, 北京 100083
2 中国科学院大学材料与光电研究中心, 北京 100049
3 低维半导体材料与器件北京市重点实验室, 北京 100083
半导体分布反馈(DFB)激光器以其卓越的光谱特性、调制特性以及低成本、可量产优势已经成为光纤通信、空间光通信中的重要光源,并将在5G、数据中心、激光雷达以及微波光子学等应用中发挥不可替代的作用。针对通信波段半导体DFB激光器的不同应用需求及特征展开综述,分别就直接调制DFB激光器、大功率DFB激光器以及低噪声(窄线宽及低相对强度噪声)DFB激光器的设计原理、优化方法及进展进行了整理、评述与展望。
激光器 半导体分布反馈激光器 高速直调激光器 大功率激光器 窄线宽激光器 低相对强度噪声激光器 
中国激光
2020, 47(7): 0701001
王皓 1,2,3,**张瑞康 1,2,3,*陆丹 1,2,3王宝军 1,2,3[ ... ]赵玲娟 1,2,3
作者单位
摘要
1 中国科学院半导体研究所半导体材料科学重点实验室, 北京 100083
2 低维半导体材料与器件北京市重点实验室, 北京 100083
3 中国科学院大学材料与光电研究中心, 北京 100049
提出一种基于AlGaInAs材料的1.55-μm波段的大功率、高速直调分布反馈(DFB)激光器阵列。采用具有良好温度特性和高微分增益的AlGaInAs材料作为量子阱和波导层以实现大功率与高带宽的输出;引入稀释波导结构来减小有源区内部损耗,同时降低远场发散角;采用悬浮光栅并优化耦合系数以实现大注入电流下的单模稳定工作。最终实现了1.5-μm波段5波长的大功率直调激光器阵列,阵列波长间隔约为5 nm,室温连续波(CW)工作时各通道输出光功率均大于100 mW,单通道最大输出光功率为160 mW,500 mA工作电流范围内边模抑制比大于55 dB,小信号调制带宽可达7 GHz,激光器最小线宽为520 kHz,相对强度噪声低于-145 dB/Hz。
激光器 1.55-μm 直调激光器; 大功率 高带宽 激光器阵列 
光学学报
2019, 39(9): 0914001
Huan Wang 1,2,3Lu Guo 1,2,3Wu Zhao 1,2,3Guangcan Chen 1,2,3[ ... ]Lingjuan Zhao 1,2,3
Author Affiliations
Abstract
1 Key Laboratory of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
2 Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
3 Beijing Key Laboratory of Low Dimensional Semiconductor Materials and Devices, Beijing 100083, China
We report a distributed-Bragg-reflectors-based 4 × 40 GHz mode-locked laser diode (MLLD) array monolithically integrated with a multimode interference (MMI) combiner. The laser produces 2.98 ps pulses with a time-bandwidth product of 0.39. The peak wavelength of the MLLD array can be tuned by 8.4 nm while maintaining a good mode-locked state. The four mode-locked channels could work simultaneously with the peak wavelength interval around 3 nm.
140.5960 Semiconductor lasers 140.4050 Mode-locked lasers 
Chinese Optics Letters
2019, 17(11): 111402
作者单位
摘要
1 西南大学 物理科学与技术学院, 重庆 400715
2 中国科学院半导体研究所 半导体材料重点实验室, 北京 100083
实验研究了一种由一个分布反馈半导体激光器、一个相位控制部分和一个半导体光放大器组成的三段式单片集成半导体激光器的动力学特性. 采用常规的动力学分析方法, 对不同相位控制电流下激光器输出的光谱、时间序列、相图及功率谱进行了分析, 考察了其进入混沌的路径及阵发混沌的特性。研究结果表明, 在适当的运行参数下, 单片集成半导体激光器可呈现混沌态与稳定态随机交替出现的阵发混沌状态输出.在固定分布反馈半导体激光器电流和半导体光放大器电流不变的情况下, 连续地增大相位区的电流IP, 单片集成半导体激光器将先后经历稳定态、单周期态、阵发混沌态, 最后再回到稳定态的过程.在确定了激光器处于阵发混沌态时相位区电流IP的取值范围之后, 进一步的分析结果表明, 随着相位区电流IP的增加, 平均层流时间先减小, 达到一个极小值后再迅速增大.
非线性光学 激光物理 实验研究 单片集成半导体激光器 阵发混沌 动力学态 平均层流时间 Nonlinear optics Laser physics Experimental investigation Monolithically integrated semiconductor laser Intermittent chaos Dynamical state Average laminar time 
光子学报
2018, 47(5): 0514004
Author Affiliations
Abstract
Key Laboratory of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences, College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing Key Laboratory of Low Dimensional Semiconductor Materials and Devices, Beijing 100083, China
We report 20 Gb/s transmission of four-level pulse amplitude modulation (PAM) signal using a directly modulated tunable distributed Bragg reflector (DBR) laser. Transmission distance over 20 km was achieved without using optical amplifiers and optical dispersion compensation modules. A wavelength tuning range of 11.5 nm and a 3 dB bandwidth greater than 10 GHz over the entire wavelength tuning range were obtained.
140.5960 Semiconductor lasers 250.5300 Photonic integrated circuits 140.3600 Lasers, tunable 
Chinese Optics Letters
2018, 16(9): 091401
Author Affiliations
Abstract
Key Laboratory of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Science, and Beijing Key Laboratory of Low Dimensional Semiconductor Materials and Devices, Beijing 100083, China
A terahertz excitation source based on a dual-lateral-mode distributed Bragg reflector (DBR) laser working in the 1.5 μm range is experimentally demonstrated. By optimizing the width of the ridge waveguide, the fundamental and the first-order lateral modes are obtained from the laser. The mode spacing between the two modes is 9.68 nm, corresponding to a beat signal of 1.21 THz. By tuning the bias currents of the phase and DBR sections, the wavelengths of the two modes can be tuned by 2 nm, with a small strength difference (<5 dB) and a large side-mode suppression ratio (SMSR>45 dB).
140.5960 Semiconductor lasers 250.5960 Semiconductor lasers 
Chinese Optics Letters
2016, 14(1): 011406
Author Affiliations
Abstract
1 Key Laboratory of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Science, Beijing 100083, China
2 Tsinghua National Laboratory for Information Science and Technology, State Key Laboratory of Integrated Optoelectronics, Department of Electronic Engineering, Tsinghua University, Beijing 100084, China
We experimentally demonstrate all-optical clock recovery for 100 Gb/s return-to-zero on–off keying signals based on a monolithic dual-mode distributed Bragg reflector (DBR) laser, which can realize both mode spacing and wavelength tuning. By using a coherent injection locking scheme, a 100 GHz optical clock can be recovered with a timing jitter of 530 fs, which is derived by an optical sampling oscilloscope from both the phase noise and the power fluctuation. Furthermore, for degraded injection signals with an optical signal-to-noise ratio as low as 4.1 dB and a 25 km long distance transmission, good-quality optical clocks are all successfully recovered.
070.6020 Continuous optical signal processing 140.3520 Lasers, injection-locked 
Chinese Optics Letters
2016, 14(3): 030604
Author Affiliations
Abstract
1 Key Laboratory of Semiconductor Materials Science and Beijing Key Laboratory of Low Dimensional Semiconductor Materials and Devices, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
2 Network Technology Research Institute, China United Network Communications Corporation Limited, Beijing 100048, China
An InP-based monolithically integrated few-mode transmitter aiming at the combination of wavelength division multiplexing (WDM) and mode division multiplexing (MDM) technologies is proposed. The core elements of the proposed transmitter are mode converters and a wavelength-mode division multiplexer that are all based on multimode interference (MMI) couplers. Simulations show that the wavelength-mode division multiplexer has a large fabrication tolerance of 30 and 0.5 μm for the length and the width of the device, respectively. A low loss below 0.26 dB for the passive parts of the transmitter is obtained in the whole C-band wavelength range.
250.5300 Photonic integrated circuits 060.4230 Multiplexing 060.4510 Optical communications 
Chinese Optics Letters
2016, 14(8): 080601
Author Affiliations
Abstract
Key Laboratory of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100086, China
We report a direct, modulated bandwidth enhancement in a amplified feedback laser (AFL), both experimentally and numerically. By means of fabricated devices, an enhanced 3 dB bandwidth of 27 GHz with an in-band flatness of ±3 dB is experimentally confirmed at 13 °C. It is numerically confirmed that the modulated bandwidth of the AFL can be enhanced to two times its original bandwidth, with more controlled flexibility to realize a flat, small-signal response.
140.5960 Semiconductor lasers 130.3120 Integrated optics devices 060.4510 Optical communications 
Chinese Optics Letters
2015, 13(5): 051401

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!