红外与激光工程, 2016, 45 (12): 1206004, 网络出版: 2017-01-12  

间隔掺杂低温Yb:YAG叠片放大器的热效应优化

Optimization of thermal effects in a cryogenically cooled Yb:YAG multislab amplifier with interlayers
作者单位
1 中国工程物理研究院激光聚变研究中心, 四川 绵阳 621900
2 上海交通大学 IFSA协同创新中心, 上海 200240
3 中国工程物理研究院研究生部, 北京 100088
摘要
针对高重复频率运行下低温氦气冷却的间隔掺杂Yb:YAG叠片激光放大器中热效应的问题, 提出了一种多层Cr4+:YAG热管理技术, 并优化设计了放大器Cr4+:YAG间隔层和包边结构以减少热效应的影响。利用三维有限元和琼斯矩阵方法, 分析了不同Cr4+:YAG结构激光介质中温度和应力应变分布, 并模拟计算了热致双折射退偏损耗和波前畸变。数值结果表明, 通过设计两层和三层Cr4+:YAG结构, 降低与增益介质相邻Cr4+:YAG中的热沉积, 增益区内的横向温差可降低到1.5 K以内, 光束经过整个放大器后平均退偏损耗和波前畸变可分别减少到0.5%、0.8 ?姿; 进一步合理地设计Cr4+:YAG的层数和吸收系数能有效消除热效应对光束质量的影响。
Abstract
The thermal management technique of multi-layer Cr4+:YAG medium was presented for mitigating the deleterious impact of thermal effects in a cryogenic helium gas cooled Yb:YAG multislab amplifier with Cr4+:YAG interlayers operating at a high repetition rate, by means of optimizing the architectures of Cr4+:YAG interlayers and claddings in the laser slabs. The distributions of temperature, stress, depolarization losses and optical path difference in four amplifier architectures with different Cr4+:YAG parameters were numerically calculated by a three-dimensional finite element analysis and the Jones matrices method. Based on these results of the propsed modelling, it was showed that the properly designed two-layer and three-layer Cr4+:YAG could decrease the heat deposition of the Cr4+:YAG around the gain media, and hence result in a very small transverse temperature gradient (<1.5 K) in the first slab. When the laser beam traveled through the whole amplifier, the average thermal-stress induced depolarization losses and optical path difference for the laser amplifier head were reduced to 0.5% and 0.8 ?姿, respectively. Furthermore, the negative impact of thermal effects on the output beam quality can be vanished by properly designing the number, widths, and absorption coefficients of the multi-layer Cr4+:YAG medium, which are beneficial for the engineering/design of the next generation of high energy, high power lasers.
参考文献

[1] Edwards M J, Patel P K, Lindl J D, et al. Progress towards ignition on the National Ignition Facility[J]. Physics of Plasmas, 2011, 51(3): 1103-1107.

[2] Miquel J, Lion C, Vivini P, et al. The LMJ program: overview and status of LMJ & PETAL projects[C]//CLEO: 2013 .

[3] 宋薇, 章亚男, 沈林勇. 高功率激光装置中靶的定位调试[J]. 光学 精密工程, 2015, 23(2): 520-527.

    Song Wei, Zhang Ya'nan, Shen Linyong. Target positioning in high power laser device[J]. Optics and Precision Engineering, 2015, 23(2): 520-527. (in Chinese)

[4] 闫亚东, 何俊华, 王峰, 等. 神光-Ⅲ主机近背向散射诊断光学系统设计[J]. 光学 精密工程, 2014, 22(6): 1469-1476.

    Yan Yadong, He Junhua, Wang Feng, et al. Design of optical system for SG-III near backscatter diagnosis[J]. Optics and Precision Engineering, 2014, 22(6): 1469-1476. (in Chinese)

[5] Orth C D, Payne S A, Krupke W F. A diode pumped solid state laser driver for inertial fusion energy[J]. Nuclear Fusion, 1996, 36(1): 75-116.

[6] Bayramian A, Armstrong P, Ault E, et al. The mercury project: a high average power, gas-cooled laser for inertial fusion energy development[J]. Fusion Science and Technology, 2007, 52(3): 383-387.

[7] Banerjee S, Ertel K, Mason P D, et al. High-efficiency 10 J diode pumped cryogenic gas cooled Yb:YAG multislab amplifier[J]. Opt Lett, 2012, 37(12): 2175-2177.

[8] Siebold M, Loeser M, Harzendorf G, et al. High-energy diode-pumped D2O-cooled multislab Yb:YAG and Yb:QX-glass lasers[J]. Opt Lett, 2014, 39(12): 3611-3614.

[9] Krupke W F. Ytterbium solid-state lasers-The first decade[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2000, 6(6): 1287-1296.

[10] Chanteloup J C, Albach D, Lucianetti A, et al. Multi kJ level laser concepts for HiPER facility[C]//The 6th International Conference on Inertial Fusion Sciences and Applications, 2010, 222: 1742-1780.

[11] Bayramian A, Aceves S, Anklam T, et al. Compact, Efficient laser systems required for laser inertial fusion energy[J]. Fusion Science And Technology, 2011, 60(1): 28-48.

[12] Rus B, Bakule P, Kramer D, et al. ELI-Beamlines laser systems: status and design options[C]//Proc of SPIE, 2013, 8780: 87801T.

[13] 支音, 李隆, 史彭, 等. 脉冲LD端面泵浦Nd:YAG晶体温场研究[J]. 红外与激光工程, 2015, 44(2): 491-496.

    Zhi Yin, Li Long, Shi Peng, et al. Temperature field of pulse LD end pumped Nd:YAG crystal[J]. Infrared and Laser Engineering, 2015, 44(2): 491-496. (in Chinese)

[14] 张德平, 吴超, 张蓉竹, 等. LD端面泵浦分离式放大器结构的热效应研究[J]. 红外与激光工程, 2015, 44(8): 2250-2255.

    Zhang Deping, Wu Chao, Zhang Rongzhu, et al. Study of thermal effect of LD end-pumped separated amplifier structure[J]. Infrared and Laser Engineering, 2015, 44(8): 2250-2255. (in Chinese)

[15] 卞进田, 王玺. 半导体泵浦固体激光器热透镜效应测量方法[J]. 红外与激光工程, 2013, 42(S2): 391-394.

    Bian Jintian, Wang Xi. Measuring thermal lens effect of LD-pumped solid-state laser[J]. Infrared and Laser Engineering, 2013, 42(S2): 391-394. (in Chinese)

[16] Slezak O, Lucianetti A, Divoky M, et al. Optimization of wavefront distortions and thermal-stress induced birefringence in a cryogenically-cooled multislab laser amplifier[J]. IEEE Journal of Quantum Electronics, 2013, 49(11): 960-966.

[17] 严雄伟, 於海武, 曹丁向, 等. 脉冲储能型重复频率Yb:YAG片状激光放大器ASE效应研究[J]. 物理学报, 2009, 58(6): 4230-4238.

    Yan Xiongwei, Yu Haiwu, Cao Dingxiang, et al. ASE effect in pulsed energy-storage reprated Yb:YAG disk laser amplifier[J]. Acta Physica Sinica, 2009, 58(6): 4230-4238. (in Chinese)

[18] Rohsenow W M, Hartnett J P, Cho Y I. Handbook of Heat Transfer[M]. New York: McGraw-Hill, 1998.

[19] Timoshenko S, Goodier J N. Theory of Elasticity[M]. New York: McGraw-Hill , 1951.

[20] Born M, Wolf E. Principles of Optics[M]. Oxford: Pergamon, 1970.

[21] Ying C, Bin C, Patel M K R, et al. Calculation of thermal-gradient-induced stress birefringence in slab Lasers-I[J]. IEEE Journal of Quantum Electronics, 2004, 40(7): 909-916.

[22] Cousins A K. Temperature and thermal stress scaling in finite-length end-pumped laser rods[J]. IEEE Journal of Quantum Electronics, 1992, 28(4): 1057-1069.

[23] Aggarwal R L, Ripin D J, Ochoa J R, et al. Measurement of thermo-optic properties of Y3Al5O12, Lu3Al5O12, YAIO3, LiYF4, LiLuF4, BaY2F8, KGd(WO4)2, and KY(WO4)2 laser crystals in the 80-300 K temperature range[J]. Journal of Applied Physics, 2005, 98(10): 1035114.

[24] Brown D C. Ultrahigh-average-power diode-pumped Nd:YAG and Yb:YAG lasers[J]. IEEE Journal of Quantum Electronics, 1997, 33(5): 861-873..

肖凯博, 蒋新颖, 袁晓东, 郑建刚, 郑万国. 间隔掺杂低温Yb:YAG叠片放大器的热效应优化[J]. 红外与激光工程, 2016, 45(12): 1206004. Xiao Kaibo, Jiang Xinying, Yuan Xiaodong, Zheng Jiangang, Zheng Wanguo. Optimization of thermal effects in a cryogenically cooled Yb:YAG multislab amplifier with interlayers[J]. Infrared and Laser Engineering, 2016, 45(12): 1206004.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!