中国激光, 2020, 47 (12): 1202003, 网络出版: 2020-11-27   

硼变质激光熔化沉积TC4的低周疲劳性能 下载: 729次

Low-Cycle Fatigue Performance of Boron-Modified TC4 Deposited by Laser Melting
作者单位
1 西安交通大学机械制造系统工程国家重点实验室, 陕西 西安 710049
2 西安交通大学金属材料强度国家重点实验室, 陕西 西安 710049
引用该论文

霍浩, 张安峰, 齐振佳, 吴梦杰, 王豫跃, 王普强. 硼变质激光熔化沉积TC4的低周疲劳性能[J]. 中国激光, 2020, 47(12): 1202003.

Huo Hao, Zhang Anfeng, Qi Zhenjia, Wu Mengjie, Wang Yuyue, Wang Puqiang. Low-Cycle Fatigue Performance of Boron-Modified TC4 Deposited by Laser Melting[J]. Chinese Journal of Lasers, 2020, 47(12): 1202003.

参考文献

[1] 霍浩, 梁朝阳, 张安峰, 等. 激光熔覆沉积含硼TC4钛合金力学性能的各向异性[J]. 中国激光, 2019, 46(12): 1202008.

    Huo H, Liang Z Y, Zhang A F, et al. Anisotropy of mechanical properties of laser-cladding-deposited TC4 titanium alloy containning boron[J]. Chinese Journal of Lasers, 2019, 46(12): 1202008.

[2] 陈静, 张强, 刘彦红, 等. 激光成形修复Ti17合金组织与高温性能研究[J]. 中国激光, 2011, 38(6): 0603022.

    Chen J, Zhang Q, Liu Y H, et al. Research on microstructure and high-temperature properties of Ti17 titanium alloy fabricated by laser solid forming[J]. Chinese Journal of Lasers, 2011, 38(6): 0603022.

[3] 陈博, 邵冰, 刘栋, 等. 热处理对激光熔化沉积TC17钛合金显微组织及力学性能的影响[J]. 中国激光, 2014, 41(4): 0403001.

    Chen B, Shao B, Liu D, et al. Effect of heat treatment on microstructure and mechanical properties of laser melting deposited TC17 titanium alloy[J]. Chinese Journal of Lasers, 2014, 41(4): 0403001.

[4] 何博文, 冉先喆, 田象军, 等. 激光增材制造TC11钛合金的耐蚀性研究[J]. 中国激光, 2016, 43(4): 0403004.

    He B W, Ran X Z, Tian X J, et al. Corrosion resistance research of laser additive manufactured TC11 titanium alloy[J]. Chinese Journal of Lasers, 2016, 43(4): 0403004.

[5] 张霜银. 激光立体成形Ti-6Al-4V合金的热处理组织与性能[D]. 西安: 西北工业大学, 2009.

    Zhang SY. Research on the heat treated microstructures and properties of laser solid forming Ti-6Al-4V alloy[D]. Xi'an:Northwestern Polytechnical University, 2009.

[6] Ren Y M, Lin X, Guo P F, et al. Low cycle fatigue properties of Ti-6Al-4V alloy fabricated by high-power laser directed energy deposition: experimental and prediction[J]. International Journal of Fatigue, 2019, 127: 58-73.

[7] 薛蕾, 陈静, 林鑫, 等. 激光成形修复TC4合金锻件的低周疲劳性能[J]. 稀有金属材料与工程, 2011, 40(7): 1225-1229.

    Xue L, Chen J, Lin X, et al. Low cycle fatigue property of laser forming repaired TC4 forgings[J]. Rare Metal Materials and Engineering, 2011, 40(7): 1225-1229.

[8] 梁朝阳, 张安峰, 李丽君, 等. 感应加热辅助变质剂硼细化激光熔覆沉积TC4晶粒的研究[J]. 中国激光, 2018, 45(7): 0702001.

    Liang Z Y, Zhang A F, Li L J, et al. Induction heating assisted modifier boron refining of TC4 grains by laser cladding deposition[J]. Chinese Journal of Lasers, 2018, 45(7): 0702001.

[9] Manson S S. Fatigue: a complex subject: some simple approximations[J]. Experimental Mechanics, 1965, 5(4): 193-226.

[10] Muralidharan U, Manson S S. A modified universal slopes equation for estimation of fatigue characteristics of metals[J]. Journal of Engineering Materials and Technology, 1988, 110(1): 55-58.

[11] Ricotta M. Simple expressions to estimate the Manson-Coffin curves of ductile cast irons[J]. International Journal of Fatigue, 2015, 78: 38-45.

[12] Basquin OH. The exponential law of endurance tests[J]. Proceedings of the American Society of Testing and Materials, 1910, 10(6): 25-30.

[13] Manson SS. Behavior of materials under conditions of thermal stress[R/OL]. [2020-05-07].https://digital.library.unt.edu/ark:/67531/metadc60551/.

[14] SureshS. Fatigue of materials[M]. 2nd ed. [ S.l.]: Cambridge University Press, 1998: 221- 279.

[15] China Aviation Materials Manual Editorial Committee. China aeronautical materials handbook: titanium alloys and copper alloys[M]. Beijing: China Standard Press, 2001: 104- 132.

[16] Hall I W, Hammond C. The relation between crack propagation characteristics and fracture toughness in alpha +beta titanium alloys[J]. Titanium Science and Techonlogy, 1973, 2: 1365-1367.

[17] Lütjering G. Influence of processing on microstructure and mechanical properties of (α+β) titanium alloys[J]. Materials Science and Engineering A, 1998, 243(1/2): 32-45.

[18] 王雷, 王琨, 李艳青, 等. TC4ELI钛合金低周疲劳性能研究[J]. 钛工业进展, 2018, 35(2): 17-21.

    Wang L, Wang K, Li Y Q, et al. Low-cycle fatigue properties of TC4ELI titanium alloy[J]. Titanium Industry Progress, 2018, 35(2): 17-21.

[19] Shao C W, Zhang P, Liu R, et al. Low-cycle and extremely-low-cycle fatigue behaviors of high-Mn austenitic TRIP/TWIP alloys: property evaluation, damage mechanisms and life prediction[J]. Acta Materialia, 2016, 103: 781-795.

霍浩, 张安峰, 齐振佳, 吴梦杰, 王豫跃, 王普强. 硼变质激光熔化沉积TC4的低周疲劳性能[J]. 中国激光, 2020, 47(12): 1202003. Huo Hao, Zhang Anfeng, Qi Zhenjia, Wu Mengjie, Wang Yuyue, Wang Puqiang. Low-Cycle Fatigue Performance of Boron-Modified TC4 Deposited by Laser Melting[J]. Chinese Journal of Lasers, 2020, 47(12): 1202003.

本文已被 2 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!