红外与激光工程, 2018, 47 (11): 1105007, 网络出版: 2019-01-10   

晶体拉曼放大器的理论解析

Theoretical analysis on crystalline Raman amplifier
作者单位
1 天津理工大学 理学院, 天津 300384
2 中国电子科技集团公司第十八研究所, 天津 300384
摘要
晶体拉曼放大器是获得高光束质量、高光谱纯度、高功率拉曼激光的重要途径。通过引入四个归一化综合参量, 推导出了外腔拉曼放大器的归一化输运方程组。通过数值求解该输运方程组得到了描述拉曼放大器运转的一组普适理论曲线; 分析了复合归一化变量对拉曼放大器性能的影响; 研究了晶体拉曼放大器放大率、放大后拉曼脉冲形状、光-光转换效率等参量在泵浦脉冲功率密度、泵浦脉冲与被放大脉冲相对宽度、泵浦脉冲与被放大脉冲时间重叠性等条件的变化规律。用实验数据对归一化理论进行了验证, 结果表明, 理论结果与实验数据相吻合, 证明了文中理论计算的正确性和可行性。
Abstract
Crystalline Raman amplifier is an important way to obtain high beam quality, high spectral purity and high power Raman laser. The normalized transport equations of the external cavity Raman amplifier were derived by inducing four normalized composite parameters. A set of universal theoretical curves describing the operation of Raman amplifiers were obtained by numerical solving the transport equations, and the influence of the complex normalized variables on the performance of the Raman amplifiers was analyzed. The dependences of the magnification of the Raman pulse peak intensity, pulse shape of the output Raman laser, and the conversion efficiency from pumping laser to output Raman laser on the pumping pulse intensity, the relative width of the pumping pulse and Raman seed pulse, and the time overlap of the pumping pulse and Raman seed pulse were studied in detail. The optimum working condition of crystalline Raman amplifier was explored. The normalized theory was verified with actual experimental data. It is indicated that the theoretical results are consistent with the measured data. The normalized rate-equation model is proved to be precise and feasible.
参考文献

[1] Bai F, Wang Q P, Jiao Z, et al. Efficient diode end-pumped acousto-optically Q-switched Nd: YAG/BaTeMo2O9 Raman laser [J]. Appl Opt, 2016, 55(32): 9265-9269.

[2] Lin H Y, Pan X, Huang X H, et al. Multi-wavelength passively Q-switched c-cut Nd: YVO4 self-Raman laser with Cr4+: YAG saturable absorber [J]. Opt Commun, 2016, 368: 39-42.

[3] Li B, Sun B, Lei P, et al. High-efficiency, high-repetition-rate Nd: YVO4 self-Raman laser pumped by a wavelength-locked 913.9-nm diode laser [J]. Appl Opt, 2017, 56(5): 1542-1545.

[4] Guo J H, Duan Y M, Wang H Y, et al. Efficient Nd: YAG\KTiOAsO4 cascaded Raman laser emitting around 1.2 μm [J]. Opt Mater, 2017, 71: 66-69.

[5] 丁欣, 张巍, 刘俊杰, 等. 880 nm同带泵浦的高效率Nd: YVO4自拉曼激光器[J]. 红外与激光工程, 2016, 45 (1): 0105002.

    Ding Xin, Zhang Wei, Liu Junjie, et al. High efficiency actively Q-switched Nd: YVO4 self-Raman laser under 880 nm in-band pumping [J]. Infrared and Laser Engineering, 2016, 45 (1): 0105002. (in Chinese)

[6] 李述涛, 董渊金, 金光勇, 等. 连续腔内倍频拉曼激光器的归一化理论解析 [J]. 红外与激光工程, 2015, 44(1): 71-75.

    Li Shutao, Dong Yuanjin, Jin Guangyong, et al. Normalized theoretical analysis of continuous-wave intracavity frequency-doubled Raman laser[J]. Infrared and Laser Engineering, 2015, 44(1): 71-75. (in Chinese)

[7] Zhang H N, Li P. High-efficiency eye-safe Nd: YAG/SrWO4 Raman laser operating at 1 664 nm [J]. Appl Phys B, 2016, 122(1): 12.

[8] Fan L, Zhao W Q, Qiao X, et al. An efficient continuous-wave YVO4/Nd: YVO4/YVO4 self-Raman laser pumped by a wavelength-locked 878.9 nm laser diode [J]. Chin Phys B, 2016, 25(11): 114207.

[9] 王慧, 张会峰, 郭涛. Nd: GYSGG/YVO4双波长人眼安全波段内腔拉曼激光器[J]. 红外与激光工程, 2015, 44(12): 3512-3516.

    Wang Hui, Zhang Huifeng, Guo Tao. Dual-wavelength eye-safe laser based on Nd: GYSGG/YVO4 intracavity stimulated Raman conversion [J]. Infrared and Laser Engineering, 2015, 44(12): 3512-3516. (in Chinese)

[10] 李文超, 张景茹, 孙宇超, 等. 硅拉曼激光器的设计与典型应用[J]. 光学 精密工程, 2013, 21(2): 308-315.

    Li Wenchao, Zhang Jingru, Sun Yuchao, et al. Design and typical application of silicon Raman laser [J]. Optics Precis Eng, 2013, 21(2): 308-315. (in Chinese)

[11] Raghunathan V, Borlaug D, Rice R R, et al. Demonstration of a mid-infrared silicon Raman amplifier [J]. Opt Express, 2007, 15(22): 14355-14362.

[12] Lisinetskii V A, Orlovich V A, Rhee H, et al. Efficient Raman amplification of low divergent radiation in barium nitrate crystal [J]. Appl Phys B, 2008, 91: 299-303.

[13] Wang C, Cong Z H, Liu Z J, et al. Theoretical and experimental investigation of an efficient pulsed barium tungstate Raman amplifier at 1 180 nm [J]. Opt Commun, 2014, 313: 80-84.

[14] 张文会, 丁双红, 丁泽, 等. 1 064 nm纳秒脉冲激发的PbWO4固态拉曼放大器[J]. 中国激光, 2014, 41(5): 0502011.

    Zhang Wenhui, Ding Shuanghong, Ding Ze, et al. A PbWO4 solid-state Raman amplifier excited by 1 064 nm nanosecond pulses[J]. Chinese J Lasers, 2014, 41(5): 0502011. (in Chinese)

[15] Ding S H, Zhang X Y, Wang Q P, et al. Numerical optimization of the extracavity Raman laser with barium nitrate crystal [J]. Opt Commun, 2006, 267: 480-486.

[16] Pask H M. The design and operation of solid-state Raman lasers [J]. Prog in Quant Electron, 2003, 27: 3-56.

王聪, 吕冬翔. 晶体拉曼放大器的理论解析[J]. 红外与激光工程, 2018, 47(11): 1105007. Wang Cong, Lv Dongxiang. Theoretical analysis on crystalline Raman amplifier[J]. Infrared and Laser Engineering, 2018, 47(11): 1105007.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!