Frontiers of Optoelectronics, 2012, 5 (1): 63, 网络出版: 2012-09-10  

Effect of dipole location on profile properties of symmetric surface plasmon polariton mode in Au/Al2O3/Au waveguide

Effect of dipole location on profile properties of symmetric surface plasmon polariton mode in Au/Al2O3/Au waveguide
作者单位
1 The State Key Laboratory of Advanced Optical Communication Systems and Networks, School of Electronics Engineering and Computer Science, Peking University, Beijing 100871, China
2 Information and Communications College, Guilin University of Electronic Technology, Guilin 541004, China
摘要
Abstract
This study uses a dipole embedded in Al2O3 layer to excite a symmetric surface plasmon polariton (SPP) mode in Au/Al2O3/Au waveguide to investigate its profile properties by using finite-difference time-domain (FDTD) method. The excited dipole decay radiatively direct near-field coupling to SPP mode owing to thin Al2O3 layer of 100 nm. The effects of electric and magnetic field intensity profiles and decay length have been considered and characterized. It is found that dipole location is an important factor to influence the horizontal and vertical profile properties of symmetric SPP mode in Au/Al2O3/Au waveguide. The amplitudes of electric and magnetic field intensity and the wavelengths of metal-insulatormetal (MIM) SPP resonance mode can be tuned by varying dipole location. The horizontal and vertical decay lengths are 19 and 24 nm, respectively. It is expected that the Au/Al2O3/Au waveguide structure is very useful for the practical applications of designing a SPP source.
参考文献

[1] Raether H. Surface plasmons on smooth and rough surfaces and on gratings. Berlin: Springer, 1988

[2] Barnes W L, Dereux A, Ebbesen T W. Surface plasmon subwavelength optics. Nature, 2003, 424(6950): 824-830

[3] Hu F F, Yi H X, Zhou Z P. Wavelength demultiplexing structure based on arrayed plasmonic slot cavities. Optics Letters, 2011, 36(8): 1500-1502

[4] Hossieni A, Massoud Y H. A low-loss metal-insulator-metal plasmonic bragg reflector. Optics Express, 2006, 14(23): 11318-11323

[5] Hu F F, Yi H X, Zhou Z P. Band-pass plasmonic slot filter with band selection and spectrally splitting capabilities. Optics Express, 2011, 19(6): 4848-4855

[6] Tanaka K, Tanaka M. Simulations of nanometric optical circuits based on surface plasmon polariton gap waveguide. Applied Physics Letters, 2003, 82(8): 1158-1160

[7] Liu L, Han Z, He S. Novel surface plasmon waveguide for high integration. Optics Express, 2005, 13(17): 6645-6650

[8] Dionne J A, Lezec H J, Atwater H A. Highly confined photon transport in subwavelength metallic slot waveguides. Nano Letters, 2006, 6(9): 1928-1932

[9] Chen L, Shakya J, Lipson M. Subwavelength confinement in an integrated metal slot waveguide on silicon. Optics Letters, 2006, 31(14): 2133-2135

[10] Verhagen E, Dionne J A, Kuipers L K, Atwater H A, Polman A. Near-field visualization of strongly confined surface plasmon polaritons in metal-insulator-metal waveguides. Nano Letters, 2008, 8(9): 2925-2929

[11] Dionne J A, Sweatlock L A, Atwater H A, Polman A. Plasmon slot waveguides: towards chip-scale propagation with subwavelengthscale localization. Physical Review B: Condensed Matter and Materials Physics, 2006, 73(3): 035407

[12] Yun B F, Hu G H, Cui Y P. Theoretical analysis of a nanoscale plasmonic filter based on a rectangular metal-insulator-metal waveguide. Journal of Physics D, Applied Physics, 2010, 43(38): 385102

[13] Hryciw A, Jun Y C, Brongersma M L. Plasmonics: electrifying plasmonics on silicon. Nature Materials, 2010, 9(1): 3-4

[14] Miyazaki H T, Kurokawa Y. Squeezing visible light waves into a 3-nm-thick and 55-nm-long plasmon cavity. Physical Review Letters, 2006, 96(9): 097401

[15] Zhou J, Hu M, Zhang Y X, Zhang P, Liu W H, Liu S G. Numerical analysis of electron-induced surface plasmon excitation using the FDTD method. Journal of Optics, 2011, 13(3): 035003

[16] Babuty A, Bousseksou A, Tetienne J P, Doyen I M, Sirtori C, Beaudoin G, Sagnes I, De Wilde Y, Colombelli R. Semiconductor surface plasmon sources. Physical Review Letters, 2010, 104(22): 226806

[17] Koller D M, Hohenau A, Ditlbacher H, Galler N, Reil F, Aussenegg F R, Leitner A, List E J W, Krenn J R. Organic plasmon-emitting diode. Nature Photonics, 2008, 2(11): 684-687

[18] Walters R J, van Loon R V A, Brunets I, Schmitz J, Polman A. A silicon-based electrical source of surface Plasmon polaritons. Nature Materials, 2010, 9(1): 21-25

[19] Economou E N. Surface plasmons in thin films. Physical Review, 1969, 182(2): 539-554

[20] Johnson P, Christy R. Optical constants of the noble metals. Physical Review B: Condensed Matter and Materials Physics, 1972, 6(12): 4370-4379

[21] Park J, Kim H, Lee IM, Kim S, Jung J, Lee B. Resonant tunneling of surface plasmon polariton in the plasmonic nano-cavity. Optics Express, 2008, 16(21): 16903-16915

Gongli XIAO, Xiang JI, Linfei GAO, Xingjun WANG, Zhiping ZHOU. Effect of dipole location on profile properties of symmetric surface plasmon polariton mode in Au/Al2O3/Au waveguide[J]. Frontiers of Optoelectronics, 2012, 5(1): 63. Gongli XIAO, Xiang JI, Linfei GAO, Xingjun WANG, Zhiping ZHOU. Effect of dipole location on profile properties of symmetric surface plasmon polariton mode in Au/Al2O3/Au waveguide[J]. Frontiers of Optoelectronics, 2012, 5(1): 63.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!