大气与环境光学学报, 2015, 10 (2): 174, 网络出版: 2015-04-14  

中高层红外光谱大气遥感研究进展

Advances in Infrared Spectral Remote Sensing of Upper Atmosphere
戴聪明 1,*刘栋 1,2魏合理 1,3
作者单位
1 中国科学院安徽光学精密机械研究所 中国科学院大气成分与光学重点实验室, 安徽 合肥 230031
2 中国科学院大学, 北京 100049
3 中国科学技术大学环境光学学院, 安徽 合肥 230026
摘要
中高层大气环境探测对理解全球中高层大气结构、化学和能量循环至关重要,在临近空间光电工程中亦有重要 应用。开展中高层大气红外光谱辐射信号的探测研究有助于理解其内部的物理化学机理,据此反演该层结的大气 参数是中高层大气红外遥感的重要研究内容。根据中高层大气环境特性,对基于火箭和卫星的中高层大气红外 光谱遥感探测进行了综述,列举了一些重要探测任务的主要科学结果,为我国的中高层大气红外遥感探测提供参考。
Abstract
The remote sensing of upper atmospheric environment is very important for understanding upper atmospheric structure, chemistry and energy cycle, and should be considered in some electro-optical engineering working within near space. The physical and chemical mechanism identified and the atmospheric parameters retrieved from upper atmospheric spectral radiance signal are important contents of upper atmospheric research. Based on rockets and satellites, the process of upper atmosphere sensed by the infrared spectra are reviewed, and some important results of remote sensing are summarized. These contents might be referenced in infrared remote sensing of the upper atmosphere.
参考文献

[1] Ree M H. Physics and Chemistry of the Upper Atmosphere[M]. Cambridge: Cambridge University Press, 1989.

[2] López-Puertas M, Taylor F W. Non-LTE Radiative Transfer in the Atmosphere[M]. Singapore: Word Scientific Publishing Co. Pte. Ltd., 2003.

[3] Akmaev R A, Fomichev V I, Zhu X. Impact of middle-atmospheric composition changes on greenhouse cooling in the upper atmosphere[J]. J. Atmos. Sol.-Terr. Phys., 2006, 68(17): 1879-1889.

[4] Zhu X. Carbon dioxide 15 μm band cooling rates in the upper middle atmosphere calculated by curtis matrix interpolation[J]. J. Atmos. Sci., 1990, 47(6): 755-774.

[5] Mlynczak M, Martin-Torres F J, Russell J, et al. The natural thermostat of nitric oxide emission at 5.3 μm in the thermosphere observed during the solar storms of April 2002[J]. Geophys. Res. Lett., 2003, 30(21): SSC 2.1-SSC 2.5.

[6] Mertens C J, Mlynczak M G, López-Puertas M, et al. Retrieval of mesospheric and lower thermospheric kinetic temperature from measurements of CO2 15 μm Earth limb emission under non-LTE conditions[J]. Geophys. Res. Lett., 2001, 28(7): 1391-1394.

[7] Mlynczak M G, Zhou D K. Kinetic and spectroscopic requirements for the measurement of mesospheric ozone at 9.6 μm under non-LTE conditions[J]. Geophys. Res. Lett., 1998, 25(5): 639-642.

[8] 陈洪滨. 中高层大气研究的空间探测[J]. 地球科学进展, 2009, 24(3): 229-240.

    Chen Hongbin. An overview of the space-based observations for upper atmospheric research[J]. Advances in Earth Science, 2009, 24(3): 229-241(in Chinese).

[9] 张晓芳, 严 卫. 中高层大气探测技术的研究进展[J].气象科学, 2007, 27(4):457-463.

    Zhang Xiaofang, Yan Wei. Advances in studies on the exploration of the middle and upper atmosphere[J]. Scientia Meteorologica Sinica, 2007, 27(4): 457-463(in Chinese).

[10] Sharma R D, Healey R J. Earthlimb emission analysis of spectral infrared rocket experiment(SPIRE) datas at 2.7 μm-a 10 year update[C]. SPIE, 1540, Box 10, Bellingham, WA 98227, 1991.

[11] Degges T C, D’Agti A P. A user’s guide to the AFGL/Visidyne high altitude infrared radiance model[R]. AFGL-TR-85-0015, 1985, ADA161432.

[12] Stair Jr A T, Sharma R D, Nadile R M, et al. Observations of limb radiance with Cryogenic Spectral Infared Rocket Experiment[J]. J. Geophysi. Res.: Space Phys., 1985, 90(A10): 9763-9775.

[13] Baker K D, Bake D J r, Ulwick J C, et al. Rocketborne measurement of an infared enhancement associated with a gright auroral breakup[R]. Air Force Geophysics Lab Hanscom AFB MA, 1977, AFGL-TR-77-0157, ADA046474.

[14] Stair Jr A T, Ulwick J C, Baker K D, et al. Rocketborne Observations of Atmospheric Infrared Emissions in the Auroral Region[M]// Atmospheres of Earth and the Planets, Springer Netherlands, 1975: 335-346.

[15] Degges T C. Vibrationally excited nitric oxide in the upper atmosphere[J]. Appl. Opt., 1971, 10(8): 1856-1860.

[16] Espy P J, Harris C R, Steed A J, et al. Rocketborne interferometer measurement of infared auroral spectra[J]. Planet. Space. Sci., 1988, 36(6): 543-551.

[17] Stair Jr A T, Pritchard J, Coleman I, et al. Rocketborne cryogenic (10 K) high-resolution interferometer spectrometer flight HIRIS: auroral and atmospheric IR emission spectra[J]. Appl. Opt., 1983, 22(7): 1056-1069.

[18] Adler-Golden S M. Analysis of H2 O infrared radiance measured during the ELC-1 Rocket Experiment[R]. Space Science Instrumentation, 1992, PL-TR-92-2136.

[19] Adler-Golden S M, Matthew M W, Smith D R. Upper atmospheric infared radiance from CO2 and NO observed during the SPIRIT 1 Rocket Experiment[J]. J. Geophys. Res.: Space Phys., 1991, 96(A7): 11319-11329.

[20] Kemp J C, Huppi E R. SPIRIT II mission overview[C]. Proc. SPIE, 1993, 2019: 300-311.

[21] Stair Jr A T, Sharma R D, Nadile R M, et al. Observation of limb radiance with Cryogenic Spectral Infrared Rocket Experiment[J]. J. Geophys. Res., 1985, 90(A10): 9763-9775.

[22] Wise J O, Smith D R, Wheeler N B, et al. Overview and summary of results and significant findings from the CIRRIS-1A experiment[J]. J. Spacecraft Rockets, 2001, 38(3): 297-322.

[23] Adler-Golden S, Smith D R, Vail J, et al. Simulations of mesospheric and thermospheric IR radiance measured in the CIRRIS-1A shuttle experiment[J]. J. Atmos. Sol.-Terr. Phy., 1999, 61(18): 1397-1410.

[24] Wintersteiner P P, Picard R H, Sharma R D, et al. Line-by-line radiative excitation model for the non-equilibrium atmosphere: Application to CO2 15 μm emission[J]. J. Geophys. Res., 1992, 97(D16): 18083-18117.

[25] Sharma R D, Ratkowshi A J, Sunderg R L, et al. Description of SHARC, The Strategic High-Altitude Radiance Code[R]. GL-TR-89-0229, 1989, ADA213806.

[26] Gille J C, Russell J M. The limb infrared monitor of the stratosphere: Experiment description, performance, and results[J]. J. Geophys. Res., 1984, 89(D4): 5125-5140.

[27] Rodgers C D, Jones R L, Barnett J J. Retrieval of temperature and composition from Nimbus 7 SAMS measurement[J]. J. Geophys. Res., 1984, 89(D4): 5280-5286.

[28] O’Neil R R, Gardiner H A B, Gibson J J, et al. Midcourse space experiment (MSX):overview of mid-wave infrared atmospheric gravity waves in earth limb and terrestrial backgrounds[J]. EO Propagation, Signature and System Performance Under Adverse Meteorological Conditions Considering Out-of-Area Operations, 1998.

[29] O’Neil R.R. Gardiner H A B, Gibson J J. MSX: Remotely sensed observations of atmospheric infrared radiance and spatial structure[C]. Proc. SPIE, 2002, 4539: 446-453.

[30] Roche A E, Kumer J B. Cryogenic limb array etalon spectrometer (CLAES): experiment overview[C]. Proc. SPIE 0973, Cryogenic Optical Systems and Instruments III.

[31] Kaye J A, Kumer J B. Nonlocal thermodynamic equilibrium effects in stratospheric NO and implications for infared remote sensing[J]. Appl. Opt., 1987, 26(22): 4747-4754.

[32] Grossmann K U, Gusev O, Kaufmann M, et al. A review of the scientific results from the CRISTA missions[J]. Adv. Space Res., 2004, 34(8): 1715-1721.

[33] Xu J, Liu H L, Yuan W, et al. Mesopause structure from thermosphere, ionosphere, mesosphere, energetic, and dynamics(TIMED)/sounding of the atmosphere using broadband emission radiometry(SABER) observations[J]. J. Geophys. Res., 2007, 112(D9): D09102.1- D09102.11.

[34] 高 红, 徐寄遥, 陈光明, 等.TIMED卫星测量得到的OH和O2 (1.27 μm)夜气辉全球分布特性[J]. 中国科学: 技术科学, 2011, 41(3): 374-384.

    Gao Hong, Xu Jiyao, Chen Guangming, et al. Global distributions of OH and O2 (1.27 μm) nightglow emissions observed by TIMED satellite[J]. Scientia Sinica Technologica, 2011, 41(3): 374-384(in Chinese).

[35] Preusse P, Ern M, Eckermann S D, et al. Tropopause to mesopause gravity waves in August: Measurement and modeling[J]. J. Atm. Solar Terr. Phys, 2006, 68(15): 1730-1751.

[36] Mlynczak M G, Martin-Torres F J, Russell J M, et al. The natural thermostat of nitric oxide emission at 5.3 μm in the thermosphere observed during the solar storms of April 2002[J]. Geophys. Res. Lett., 2003, 30(21): SSC 2-1- SSC 2-5.

[37] Feofilov A G, Kutepov A A. Infrared radiation in the mesosphere and lower thermosphere: energetic effects and remote sensing[J]. Surv. Geophys., 2012, 33(6): 1231-1280.

[38] Fischer H, Birk M, Blom C, et al. MIPAS: an instrument for atmospheric and climate research[J]. Atmos. Chem. Phys., 2008, 8(8): 2151-2188.

[39] Stiller G P, von Clarmann T, Funke B, et al. Sensitivity of trace gas abundances retrievals from infrared limb emission spectra to simplifying approximations in radiative transfer modeling[J]. J. Quant. Spectrosc. Radiat. Transfer, 2002, 72(3): 249-280.

[40] Funke B, López-Puertas M, Garcí-Comas M. GRANADA: a generic radiative tansfer and non-LTE population algorithm[J]. J. Quant. Spectrosc. Radiat. Transfer, 2012, 113(14): 1771-1817.

[41] Garca-Comas M, Funke B, López-Puertas M, et al. On the quality of MIPAS kinetic temperature in the middle atmosphere[J]. Atmos. Chem. Phys., 2012, 12(13): 6009-6039.

[42] Farmer C B. High resolution infrared spectroscopy of the Sun and the Earth’s atmosphere from space[J]. Microchim. Acta, 1987, 93(1-6): 189-214.

[43] Gunson M R, Abbas M M, Abrams M C, et al. The atmospheric trace molecule spectroscopy (ATMOS) experiment: Deployment on the ATLAS space shuttle missions[J]. Geophys. Res. Lett., 1996, 23(17): 2333-2336.

[44] Russell J M, Gordley L L, Park J H, et al. The halogen occultation experiment[J]. J. Geophy. Res., 1993, 98(D6): 10777-10797.

[45] HALogen Occultation Experiment[OL]. http:// haloe.gats-inc.com/about/index.php.

[46] Bernath P F, McElroy C T, Abrams M C, et al. Atmospheric chemistry experiment (ACE): mission overview[J]. Geophy. Res. Lett., 2005, 32(15): L15S01.1-L15S01.5.

[47] Bernath P F. Atmospheric chemistry experiment (ACE): analytical chemistry from orbit[J]. Trends Anal. Chem., 2006, 25(7): 647-654.

[48] ACD: Atmospheric Chemistry Experiment[OL]. http://www.ace.uwaterloo.ca/index.html.

戴聪明, 刘栋, 魏合理. 中高层红外光谱大气遥感研究进展[J]. 大气与环境光学学报, 2015, 10(2): 174. DAI Cong-ming, LIU Dong, WEI He-li. Advances in Infrared Spectral Remote Sensing of Upper Atmosphere[J]. Journal of Atmospheric and Environmental Optics, 2015, 10(2): 174.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!