Photonics Research, 2019, 7 (3): 03000351, Published Online: Mar. 7, 2019   

Visible-blind short-wavelength infrared photodetector with high responsivity based on hyperdoped silicon

Author Affiliations
1 State Key Laboratory of Silicon Materials and School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
2 e-mail: yuxuegong@zju.edu.cn
3 e-mail: mseyang@zju.edu.cn
Copy Citation Text

Xiaodong Qiu, Zijing Wang, Xiaotong Hou, Xuegong Yu, Deren Yang. Visible-blind short-wavelength infrared photodetector with high responsivity based on hyperdoped silicon[J]. Photonics Research, 2019, 7(3): 03000351.

References

[1] T. Yu, F. Wang, Y. Xu, L. Ma, X. Pi, D. Yang. Graphene coupled with silicon quantum dots for high-performance bulk-silicon-based Schottky-junction photodetectors. Adv. Mater., 2016, 28: 4912-4919.

[2] X. Wang, Z. Cheng, K. Xu, H. K. Tsang, J.-B. Xu. High-responsivity graphene/silicon-heterostructure waveguide photodetectors. Nat. Photonics, 2013, 7: 888-891.

[3] X. Qiu, X. Yu, S. Yuan, Y. Gao, X. Liu, Y. Xu, D. Yang. Trap assisted bulk silicon photodetector with high photoconductive gain, low noise, and fast response by Ag hyperdoping. Adv. Opt. Mater., 2018, 6: 1700638.

[4] Z. Huang, J. E. Carey, M. Liu, X. Guo, E. Mazur, J. C. Campbell. Microstructured silicon photodetector. Appl. Phys. Lett., 2006, 89: 033506.

[5] M. Casalino, L. Sirleto, L. Moretti, M. Gioffrè, G. Coppola, I. Rendina. Silicon resonant cavity enhanced photodetector based on the internal photoemission effect at 1.55 m: fabrication and characterization. Appl. Phys. Lett., 2008, 92: 251104.

[6] D.-S. Tsai, C.-A. Lin, W.-C. Lien, H.-C. Chang, Y.-L. Wang, J.-H. He. Ultra-high-responsivity broadband detection of Si metal-semiconductor-metal Schottky photodetectors improved by ZnO nanorod arrays. ACS Nano, 2011, 5: 7748-7753.

[7] X. Li, J. Carey, J. Sickler, M. Pralle, C. Palsule, C. Vineis. Silicon photodiodes with high photoconductive gain at room temperature. Opt. Express., 2012, 20: 5518-5523.

[8] Z. Chen, Z. Cheng, J. Wang, X. Wan, C. Shu, H. K. Tsang, H. P. Ho, J. B. Xu. High responsivity, broadband, and fast graphene/silicon photodetector in photoconductor mode. Adv. Opt. Mater., 2015, 3: 1207-1214.

[9] J. F. Reintjes, J. C. McGroddy. Indirect two-photon transitions in Si at 1.06  μm. Phys. Rev. Lett., 1973, 30: 901-903.

[10] H. K. Tsang, C. S. Wong, T. K. Liang, I. E. Day, S. W. Roberts, A. Harpin, J. Drake, M. Asghari. Optical dispersion, two-photon absorption and self-phase modulation in silicon waveguides at 1.5  μm wavelength. Appl. Phys. Lett., 2002, 80: 416-418.

[11] A. R. Cowan, G. W. Rieger, J. F. Young. Nonlinear transmission of 1.5  μm pulses through single-mode silicon-on-insulator waveguide structures. Opt. Express, 2004, 12: 1611-1621.

[12] M. Dinu, F. Quochi, H. Garcia. Third-order nonlinearities in silicon at telecom wavelengths. Appl. Phys. Lett., 2003, 82: 2954-2956.

[13] H. Chen, X. S. Luo, A. W. Poon. Cavity-enhanced photocurrent generation by 1.55  μm wavelengths linear absorption in a p-i-n diode embedded silicon microring resonator. Appl. Phys. Lett., 2009, 95: 171111.

[14] T. Baehr-Jones, M. Hochberg, A. Scherer. Photodetection in silicon beyond the band edge with surface states. Opt. Express, 2008, 16: 1659-1668.

[15] M. W. Geis, S. J. Spector, M. E. Grein, R. T. Schulein, J. U. Yoon, D. M. Lennon, S. Deneault, F. Gan, F. X. Kaertner, T. M. Lyszczarz. CMOS-compatible all-Si high-speed waveguide photodiodes with high responsivity in near-infrared communication band. IEEE Photon. Technol. Lett., 2007, 19: 152-154.

[16] A. Akbari, P. Berini. Schottky contact surface-plasmon detector integrated with an asymmetric metal stripe waveguide. Appl. Phys. Lett., 2009, 95: 021104.

[17] S. Y. Zhu, G. Q. Lo, M. B. Yu, D. L. Kwong. Low-cost and high-gain silicide Schottky-barrier collector phototransistor integrated on Si waveguide for infrared detection. Appl. Phys. Lett., 2008, 92: 081103.

[18] M. Casalino, L. Sirleto, M. Iodice, N. Saffioti, M. Gioffre, I. Rendina, G. Coppola. Cu/p-Si Schottky barrier-based near infrared photodetector integrated with a silicon-on-insulator waveguide. Appl. Phys. Lett., 2010, 96: 241112.

[19] A. P. Knights, J. D. B. Bradley, S. H. Gou, P. E. Jessop. Silicon-on-insulator waveguide photodetector with self-ion-implantation-engineered-enhanced infrared response. J. Vac. Sci. Technol. A, 2006, 24: 783-786.

[20] J. Bradley, P. Jessop, A. Knights. Silicon waveguide-integrated optical power monitor with enhanced sensitivity at 1550  nm. Appl. Phys. Lett., 2005, 86: 241103.

[21] J. P. Mailoa, A. J. Akey, C. B. Simmons, D. Hutchinson, J. Mathews, J. T. Sullivan, D. Recht, M. T. Winkler, J. S. Williams, J. M. Warrender, P. D. Persans, M. J. Aziz, T. Buonassisi. Room-temperature sub-band gap optoelectronic response of hyperdoped silicon. Nat. Commun., 2014, 5: 3011.

[22] L. Shen, Y. Zhang, Y. Bai, X. Zheng, Q. Wang, J. Huang. A filterless, visible-blind, narrow-band, and near-infrared photodetector with a gain. Nanoscale, 2016, 8: 12990-12997.

[23] Z. Guo, S. Park, J. Yoon, I. Shin. Recent progress in the development of near-infrared fluorescent probes for bioimaging applications. Chem. Soc. Rev., 2014, 43: 16-29.

[24] A. Armin, R. D. Jansen-van Vuuren, N. Kopidakis, P. L. Burn, P. Meredith. Narrowband light detection via internal quantum efficiency manipulation of organic photodiodes. Nat. Commun., 2015, 6: 6343.

[25] A. Sobhani, M. W. Knight, Y. Wang, B. Zheng, N. S. King, L. V. Brown, Z. Fang, P. Nordlander, N. J. Halas. Narrowband photodetection in the near-infrared with a plasmon-induced hot electron device. Nat. Commun., 2013, 4: 1643.

[26] R. Chen, B. Fan, M. Pan, Q. Cheng, C. Chen. Room-temperature optoelectronic response of Ni supersaturated p-type Si processed by continuous-wave laser irradiation. Mater. Lett., 2016, 163: 90-93.

[27] E. García-Hemme, R. García-Hernansanz, J. Olea, D. Pastor, A. del Prado, I. Mártil, G. González-Díaz. Room-temperature operation of a titanium supersaturated silicon-based infrared photodetector. Appl. Phys. Lett., 2014, 104: 211105.

[28] Y. Berencén, S. Prucnal, F. Liu, I. Skorupa, R. Hübner, L. Rebohle, S. Zhou, H. Schneider, M. Helm, W. Skorupa. Room-temperature short-wavelength infrared Si photodetector. Sci. Rep., 2017, 7: 43688.

[29] C. B. Simmons, A. J. Akey, J. P. Mailoa, D. Recht, M. J. Aziz, T. Buonassisi. Enhancing the infrared photoresponse of silicon by controlling the fermi level location within an impurity band. Adv. Funct. Mater., 2014, 24: 2852-2858.

[30] E. Pérez, H. Castán, H. García, S. Dueñas, L. Bailón, D. Montero, R. García-Hernansanz, E. García-Hemme, J. Olea, G. González-Díaz. Energy levels distribution in supersaturated silicon with titanium for photovoltaic applications. Appl. Phys. Lett., 2015, 106: 022105.

[31] MazurE., “Black silicon: engineering an intermediate band in silicon for photovoltaic applications,” in Abstracts of Papers of the American Chemical Society, Vol. 240, (2010).

[32] C. H. Crouch, J. E. Carey, M. Shen, E. Mazur, F. Y. Genin. Infrared absorption by sulfur-doped silicon formed by femtosecond laser irradiation. Appl. Phys. A, 2004, 79: 1635-1641.

[33] J. T. Sullivan, C. B. Simmons, J. J. Krich, A. J. Akey, D. Recht, M. J. Aziz, T. Buonassisi. Methodology for vetting heavily doped semiconductors for intermediate band photovoltaics: a case study in sulfur-hyperdoped silicon. J. Appl. Phys., 2013, 114: 103701.

[34] M. J. Sher, E. Mazur. Intermediate band conduction in femtosecond-laser hyperdoped silicon. Appl. Phys. Lett., 2014, 105: 032103.

[35] I. Umezu, J. M. Warrender, S. Charnvanichborikarn, A. Kohno, J. S. Williams, M. Tabbal, D. G. Papazoglou, X.-C. Zhang, M. J. Aziz. Emergence of very broad infrared absorption band by hyperdoping of silicon with chalcogens. J. Appl. Phys., 2013, 113: 213501.

[36] T.-H. Her, R. J. Finlay, C. Wu, S. Deliwala, E. Mazur. Microstructuring of silicon with femtosecond laser pulses. Appl. Phys. Lett., 1998, 73: 1673-1675.

[37] C. Wu, C. H. Crouch, L. Zhao, J. E. Carey, R. Younkin, J. A. Levinson, E. Mazur, R. M. Farrell, P. Gothoskar, A. Karger. Near-unity below-band-gap absorption by microstructured silicon. Appl. Phys. Lett., 2001, 78: 1850-1852.

[38] R. Younkin, J. E. Carey, E. Mazur, J. A. Levinson, C. M. Friend. Infrared absorption by conical silicon microstructures made in a variety of background gases using femtosecond-laser pulses. J. Appl. Phys., 2003, 93: 2626-2629.

[39] C. H. Crouch, J. E. Carey, J. M. Warrender, M. J. Aziz, E. Mazur, F. Y. Genin. Comparison of structure and properties of femtosecond and nanosecond laser-structured silicon. Appl. Phys. Lett., 2004, 84: 1850-1852.

[40] M.-J. Sher, Y.-T. Lin, M. T. Winkler, E. Mazur, C. Pruner, A. Asenbaum. Mid-infrared absorptance of silicon hyperdoped with chalcogen via fs-laser irradiation. J. Appl. Phys., 2013, 113: 063520.

[41] J. T. Sullivan, C. B. Simmons, T. Buonassisi, J. J. Krich. Targeted search for effective intermediate band solar cell materials. IEEE J. Photovolt., 2015, 5: 212-218.

[42] F. Rollert, N. A. Stolwijk, H. Mehrer. Solubility, diffusion and thermodynamic properties of silver in silicon. J. Phys. D, 1987, 20: 1148-1155.

[43] A. Fazzio, M. J. Caldas, A. Zunger. Electronic-structure of copper, silver, and gold impurities in silicon. Phys. Rev. B, 1985, 32: 934-954.

[44] K. Yamasaki, M. Yoshida, T. Sugano. Deep level transient spectroscopy of bulk traps and interface states in Si MOS diodes. Jpn. J. Appl. Phys., 1979, 18: 113-122.

[45] Y. J. Fang, Q. F. Dong, Y. C. Shao, Y. B. Yuan, J. S. Huang. Highly narrowband perovskite single-crystal photodetectors enabled by surface-charge recombination. Nat. Photonics, 2015, 9: 679-686.

[46] L. Li, Y. Deng, C. Bao, Y. Fang, H. Wei, S. Tang, F. Zhang, J. Huang. Self-filtered narrowband perovskite photodetectors with ultrafast and tuned spectral response. Adv. Opt. Mater., 2017, 5: 1700672.

[47] J. E. Carey, C. H. Crouch, M. Y. Shen, E. Mazur. Visible and near-infrared responsivity of femtosecond-laser microstructured silicon photodiodes. Opt. Lett., 2005, 30: 1773-1775.

[48] R. Dong, Y. J. Fang, J. Chae, J. Dai, Z. G. Xiao, Q. F. Dong, Y. B. Yuan, A. Centrone, X. C. Zeng, J. S. Huang. High-gain and low-driving-voltage photodetectors based on organolead triiodide perovskites. Adv. Mater., 2015, 27: 1912-1918.

[49] F. W. Guo, B. Yang, Y. B. Yuan, Z. G. Xiao, Q. F. Dong, Y. Bi, J. S. Huang. A nanocomposite ultraviolet photodetector based on interfacial trap-controlled charge injection. Nat. Nanotechnol., 2012, 7: 798-802.

Xiaodong Qiu, Zijing Wang, Xiaotong Hou, Xuegong Yu, Deren Yang. Visible-blind short-wavelength infrared photodetector with high responsivity based on hyperdoped silicon[J]. Photonics Research, 2019, 7(3): 03000351.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!