中国激光, 2016, 43 (5): 0514003, 网络出版: 2016-05-04   

双粒度CdSe/ZnS掺杂量子点薄膜的反射式荧光温度传感器

Reflective Fluorescence Temperature Sensor Based on Dual-Granularity CdSe/ZnS Doped Quantum Dots Thin Films
作者单位
浙江工业大学理学院光学与光电子中心, 浙江 杭州 310023
摘要
设计了一种双粒度CdSe/ZnS掺杂量子点薄膜的反射式荧光温度传感器。以发射波长分别为540 nm和610 nm的CdSe/ZnS掺杂量子点薄膜作为核心器件,研究了其光致发光光谱的峰值波长、量子点带隙、峰值强度和自参考光谱强度等参量随温度的变化特性。结果表明,在30~100 ℃的测量范围内,掺杂量子点薄膜的光致发光光谱峰值强度随着温度的增加而逐渐减小;峰值波长、量子点带隙和自参考光谱强度与温度均呈线性关系;峰值强度与温度呈指数规律关系;证明了自参考光谱强度在升温与降温的过程中具有较好的稳定性;峰值波长随温度升高出现红移,平均灵敏度可达到0.055 nm/℃。
Abstract
A reflective fluorescence temperature sensor based on the dual-granularity CdSe/ZnS doped quantum dots (QDs) thin films is designed. The CdSe/ZnS doped quantum dots thin films with the emitting wavelengths of 540 nm and 610 nm are applied to the system as a key device. The optical characteristics of photoluminescence (PL) spectra with the change of temperature between 30 ℃ to 100 ℃ are studied, such as the peak wavelengths of PL spectra, the energy bandgaps of the QDs, the peak intensity of PL spectra and the self-referenced intensity of PL spectra. Results show that, the peak intensity of PL spectra decreases gradually with the increase of temperature; the peak wavelengths of PL spectra, the energy bandgaps of the QDs and the self-referenced intensity of PL spectra vary linearly with the temperature; the peak intensity of PL spectra can be denoted by exponential function of the temperature; the stability of the self-referenced intensity of PL spectra shows good during heating and cooling; the red shift of the the peak wavelengths happens with the increase of the temperature, and the average resolution of the designed reflective fluorescence QDs temperature sensor can reach 0.055 nm/℃.
参考文献

[1] 刘海军, 蒋洪川, 吴勐, 等. 陶瓷基Pt/ITO薄膜热电偶的制备与性能研究[J]. 传感器与微系统, 2015, 34(3): 18-20.

    Liu Haijun, Jiang Hongchuan, Wu Meng, et al.. Preparation and properties study of Pt/ITO thin-film thermocouple on ceramic substrates[J]. Transducer and Microsystem Technologies, 2015, 34(3): 18-20.

[2] 严长城, 应贵平. 基于PT100铂热电阻的高精度测温系统的设计[J]. 机电工程技术, 2015, 44(3): 71-74.

    Yan Changcheng, Ying Guiping. The design of a temperature collection system with high precision based on PT100[J]. Mechanical & Electrical Engineering Technology, 2015, 44(3): 71-74.

[3] 宋念龙, 李琦, 张新雨, 等. 基于红外传感器阵列的智能温度传感器研究[J]. 传感技术学报, 2010, 23(12): 1713-1717.

    Song Nianlong, Li Qi, Zhang Xinyu, et al.. The research on an intelligent temperature sensor based on the infrared sensor array[J]. Chinese Journal of Sensors and Actuators, 2010, 23(12): 1713-1717.

[4] 申甦祺, 凌云, 廖丽丹, 等. 饱和量子点半导体光放大器高通滤波特性[J]. 光学学报, 2014, 34(10): 1025001.

    Shen Suqi, Ling Yun, Liao Lidan, et al.. High pass filter characteristics of saturated quantum dot semiconductor optical amplifiers[J]. Acta Optica Sinica, 2014, 34(10): 1025001.

[5] 钟文学, 王一平, 程广玲. 量子点系统中纳米机械振子诱导的光开关[J]. 光学学报, 2015, 35(8): 0827001.

    Zhong Wenxue, Wang Yiping, Cheng Guangling. Nanomechanical-resonator-assisted induced optical switching in quantum dot system[J]. Acta Optica Sinica, 2015, 35(8): 0827001.

[6] 朱小妹, 王晓梅, 冯刚, 等. 量子点偶联RGD用于喉癌血管的靶向活体成像[J]. 中国激光, 2014, 41(5): 0504002.

    Zhu Xiaomei, Wang Xiaomei, Feng Gang, et al.. Quantum dot conjugated RGD for targeted in vivo imaging of laryngocarcinoma vessel[J]. Chinese J Lasers, 2014, 41(5): 0504002.

[7] 赵薇, 张志凌, 庞代文. 量子点荧光标记技术在生物医学领域的应用[J]. 化学传感器, 2008, 28(1): 8-14.

    Zhao Wei, Zhang Zhiling, Pang Daiwen. Application of quantum dots as flourescent labels in medicine and biology[J]. Chemical Sensors, 2008, 28(1): 8-14.

[8] 杨冬芝, 徐淑坤, 陈启凡. 量子点的荧光特性在生物探针方面的应用[J]. 光谱学与光谱分析, 2007, 27(9): 1807-1810.

    Yang Dongzhi, Xu Shukun, Chen Qifan. Application of quantum dots to biology probes[J]. Spectroscopy and Spectral Analysis, 2007, 27(9): 1807-1810.

[9] 来守军. 量子点光学传感器的研究进展[J]. 材料导报, 2008, 22(9): 8-10.

    Lai Shoujun. Research development of optical sensor based on quantum dots[J]. Materials Review, 2008, 22(9): 8-10.

[10] 刘星, 罗阳. 量子点生物传感器中的表面修饰技术及其医学应用[J]. 分析化学, 2014, 42(7): 1061-1069.

    Liu Xing, Luo Yang. Surface modification technologies of quantum dots based biosensors and their medical applications[J]. Chinese Journal of Analytical Chemistry, 2014, 42(7): 1061-1069.

[11] De Bastida Gonzaga, Arregui Francisco J, Goicoechea Javier, et al.. Quantum dots-based optical fiber temperature sensors fabricated by layer-by-layer[J]. IEEE Sensors Journal, 2006, 6(6): 1378-1379.

[12] Walker Glen W, Sundar Vikram C, Rudzinski Christina M, et al.. Quantum-dot optical temperature probes[J]. Applied Physics Letters, 2003, 83(17): 3555-3557.

[13] Bozolan Alexandre, Gerosa Rodrigo M, De Matos Christiano J S, et al.. Temperature sensing using colloidal-core photonic crystal fiber[J]. IEEE Sensors Journal, 2012, 12(1): 195-200.

[14] 闫海珍, 程成, 张庆豪. 温度对CdSe/ZnS量子点吸收光谱和光致发光谱的影响[J]. 发光学报, 2008, 29(1): 166-170.

    Yan Haizhen, Cheng Cheng, Zhang Qinghao. Effect of the temperature on absorption and photoluminescence spectra of CdSe/ZnS quantum dots[J]. Chinese Journal of Luminescence, 2008, 29(1): 166-170.

[15] 陈肖慧, 王秀英, 赵家龙. ZnCuInS量子点的变温光致发光[J]. 发光学报, 2012, 33(9): 923-928.

    Chen Xiaohui, Wang Xiuying, Zhao Jialong. Temperature-dependent photoluminescence of ZnCuInS quantum dots[J]. Chinese Journal of Luminescence, 2012, 33(9): 923-928.

[16] 林以军, 刘文闫, 张宇. ZnCuInS/ZnSe/ZnS量子点发光光谱特性的研究[J]. 光谱学与光谱分析, 2014, 34(1): 20-22.

    Lin Yijun, Liu Wenyan, Zhang Yu, et al.. Investigation of spectroscopy ZnCuInS/ZnSe/ZnS quantum dots[J]. Spectroscopy and Spectral Analysis, 2014, 34(1): 20-22.

[17] Joshi Abhishek, Narsingi K Y, Manasreh M O, et al.. Temperature dependence of the band gap of colloidal CdSe/ZnS core/shell nanocrystals embedded into an ultraviolet curable resin[J]. Applied Physics Letters, 2006, 89(13): 131907.

[18] Valerini D, Cretí A, Lomascolo M, et al.. Temperature dependence of the photoluminescence properties of colloidal CdSe/ZnS core/shell quantum dots embedded in a polystyrene matrix[J]. Physical Review B, 2005, 71(23): 235409.

[19] Lange H, Artemyev M, Woggon U, et al.. Experimental investigation of exciton-LO-phonon couplings in CdSe/ZnS core/shell nanorods[J]. Physical Review B, 2008, 77(19): 193303.

[20] Jorge P A S, Mayeh M, Benrashid R, et al.. Quantum dots as self-referenced optical fibre temperature probes for luminescent chemical sensors[J]. Measurement Science and Technology, 2006, 17(5): 1032-1038.

耿琰, 王河林. 双粒度CdSe/ZnS掺杂量子点薄膜的反射式荧光温度传感器[J]. 中国激光, 2016, 43(5): 0514003. Geng Yan, Wang Helin. Reflective Fluorescence Temperature Sensor Based on Dual-Granularity CdSe/ZnS Doped Quantum Dots Thin Films[J]. Chinese Journal of Lasers, 2016, 43(5): 0514003.

本文已被 5 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!