大气与环境光学学报, 2018, 13 (6): 417, 网络出版: 2018-12-25   

折返路径光学湍流激光成像探测技术研究

Research on Technique of Fold Pass Laser Imaging and Detection for Atmospheric Optical Turbulence
作者单位
中国科学院安徽光学精密机械研究所中国科学院大气光学重点实验室, 安徽 合肥 230031
摘要
分析了折返路径光学湍流激光成像探测技术发展的背景和意义,阐述了湍流大气中的折返路径激光传输物理过程及其数学模型。 利用构建的实验系统,获取了人造流场和自然湍流场中动态变化的激光散斑回波图像,分析了图像的典型特征。计算表明: 利用低通滤波算法可将激光光斑分解成低频的阴影和高频的散斑亮点图像;对相邻的两帧阴影图像进行互相关运算,可以获得 二维的横向风场矢量,从而实现湍流场及其中涡旋结构的可视化,同时显示出湍流场在空间上的各向异性。提出了若干有待探究 的科学问题,例如如何利用风场矢量提取光学湍流的尺度参数,以及如何利用散斑亮点结合背景纹影技术来分析湍流场结构等, 作为下一步的研究目标。
Abstract
The background and meaning of developing the technique of fold pass laser imaging and detection for atmospheric optical turbulence are analyzed, and the physical processes and mathematic models of fold pass laser transmission are represented. Using the constructed experimental system, the echoed dynamic laser speckle images for man-made air flow and natural turbulence flow are obtained. The typical characteristics of the images are described. Calculation of the images with the algorithm of low pass filtering show that the images can be decomposed into low frequency shadows and high frequency bright dots. The mutual correlation of the adjacent shadows can produce the two dimensional vector winds and then visualize the vortexes in the turbulence field. Meanwhile, the anisotropy in the turbulence field can be disclosed. Some scientific problems such as how to extract turbulence scalar parameters from the vector wind, and how to retrieve the structure of optical turbulence from the bright dots in the speckles combined with the principle of background oriented schlieren are proposed, which would be investigated in the next step.
参考文献

[1] Hart M. Recent advances in astronomical adaptive optics[J].Applied Optics, 2010, 49(16): D17-D29.

[2] A Boggess, Leckrone D S. The history and promise of the Hubble space telescope[J].Optics & Photonics News, 1990, 1(3): 9-16.

[3] Buck A L. Effects of the atmosphere on laser beam propagation[J].Applied Optics, 1967, (4): 703-708.

[4] Ricklin J C, Davidson F M. Atmospheric turbulence effects on a partially coherent Gaussian beam: implications for free-space laser communication[J].Journal of the Optical Society of America A, 2002, 19(9): 1794-1802.

[5] 梅海平. 大气光学湍流的光纤测量技术研究[D]. 合肥: 中国科学院合肥物质科学研究院博士论文, 2007.

    Mei Haiping.Study on the Technique of Measuring Atmospheric Optical Turbulence with Fiber Optics[D]. Hefei: Doctorial Dissertation of Hefei Institutes of Physical Sciences, Chinese Academy of Sciences, 2007(in Chinese).

[6] Xiao S M, Mei H P, Huang Q K,et al. Fiber optical turbulence sensing system[C]. Proceedings of SPIE, 2012, 8417: 841733.

[7] 李华贵,姜文汉,鲜 浩. 用Hartmann-Shack波前传感器测量大气湍流特征[J]. 光电工程, 1995, 22(2): 46-49.

    Li Huagui, Jiang Wenhan, Xian Hao. Measurement of atmospheric turbulence characteristics by Hartmann-Shack wavefront sensor[J].Opto-Electronic Engineering, 1995, 22(2): 46-49(in Chinese).

[8] Rao C H, Jiang W H, Ling N. Adaptive-optics compensation by distributed beacons for non-Kolmogorov turbulence[J].Applied Optics, 2001, 40(21): 3441-3449.

[9] 饶瑞中, 李玉杰. 非Kolmogorov大气湍流中的光传播及其对光电工程的影响[J]. 光学学报, 2015, 35(5): 0501003.

    Rao Ruizhong, Li Yujie. Light propagation through non-Kolmogorov-type atmospheric turbulence and its effects on optical engineering[J].Acta Optica Sinica, 2015, 35(5): 0501003(in Chinese).

[10] 梅海平, 吴晓庆, 饶瑞中. 非Kolmogorov大气湍流温度谱标度指数的测量与分析[J]. 强激光与粒子束, 2006, 18(9): 1423-1427.

    Mei Haiping, Wu Xiaoqing, Rao Ruizhong. Measurement and analysis of temperature power spectrum scaling exponent in non-Kolmogorov turbulent atmosphere[J].High Power Laser and Particle Beams, 2006, 18(3): 1423-1427(in Chinese).

[11] Lukin V P, Nosov E V, Nosov V V,et al. Causes of non-Kolmogorov turbulence in the atmosphere[J]. Applied Optics, 2016, 55(12): B163-B168.

[12] 王钰茹, 梅海平, 康 丽, 等. 湍流大气中折返路径激光成像探测实验[J]. 中国激光, 2018, 45(4): 0401008.

    Wang Yuru, Mei haiping, Kang Li,et al. Experimental investigation on retro-reflective laser imaging in turbulence atmosphere[J]. Chinese Journal of Lasers, 2018, 45(4): 0401008 (in Chinese).

[13] V V Dudorov, M A Vorontsov, V V Kolosov. Speckle-field propagation in “frozen” turbulence: brightness function approach[J].Journal of the Optical Society of America A, 2006, 23(8):1924-1936.

[14] 韦宏艳, 吴振森, 彭 辉. 斜程大气湍流中漫射目标的散射特性[J]. 物理学报, 2008, 57(10): 6666-6672.

    Wei Hongyan, Wu Zhengsen, Peng Hui. Scattering from a diffuse target in the slant atmospheric turbulence[J].Acta Physica Sinica, 2008, 57(10): 6666-6672(in Chinese).

[15] Hargather M J, Settles G S. Retro-reflective shadowgraph technique for large-scale flow visualization[J].Applied Optics, 2009, 48(22): 4449-4457.

[16] Settles G S, Hargather M J. A review of recent developments in schlieren and shadowgraph techniques[J].Measurement Science and Technology, 2017, 28(4): 042001.

[17] Raffel M. Background-oriented schlieren (BOS) techniques[J].Experiments in Fluids, 2015, 56: 60.

梅海平, 吴晓庆, 饶瑞中. 折返路径光学湍流激光成像探测技术研究[J]. 大气与环境光学学报, 2018, 13(6): 417. MEI Haiping, WU Xiaoqing, RAO Ruizhong. Research on Technique of Fold Pass Laser Imaging and Detection for Atmospheric Optical Turbulence[J]. Journal of Atmospheric and Environmental Optics, 2018, 13(6): 417.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!