光电工程, 2019, 46 (5): 180333, 网络出版: 2019-07-25  

基于EMD-LWT的光纤陀螺阈值去噪

Fiber optic gyroscope threshold denoising based on EMD-LWT
作者单位
海军航空大学岸防兵学院,山东烟台 264001
摘要
光纤陀螺 (FOG)温度漂移数据常常淹没在各种噪声背景中,直接补偿建模漂移信号十分困难,为了更好地消除混杂在光纤陀螺温漂数据中的噪声,提出了一种经验模态分解(EMD)和提升小波变换(LWT)相结合的 EMD-LWT滤波方法对光纤陀螺输出信号进行预处理。首先对光纤陀螺含噪信号进行 EMD分解,根据信息熵值判断本征模态函数(IMF)的噪声项和混合模态项,然后对噪声项进行 LWT去噪,混合模态项进行小波分析去噪。对某干涉型 FOG进行静态测试获得陀螺漂移数据,本文提出方法与小波变换和提升小波变换滤波方法进行了对比分析。实测数据计算结果表明,本文提出的 EMD-LWT滤波算法具有最好的滤波效果,经处理后重构信号的均方根误差 (RMSE)下降了 63%,有效地滤除了 FOG输出中的噪声。
Abstract
Fiber optic gyroscope (FOG) drift data is often submerged in various noises backgrounds. It is very difficult to compensate for modeling drift signals directly. In order to better eliminate the noise mixed in the FOG temperature drift data, a hybrid EMD-LWT filtering algorithm based on empirical mode decomposition (EMD) and lifting wavelet transform (LWT) threshold denoising was proposed for gyro signals preprocessing. Firstly, the noise signal of fiber optic gyro is decomposed by EMD, and the noise term and the mixed modal term of the intrinsic mode functions (IMF) are judged according to the information entropy. Then the noise term is de-noised by LWT and the mixed modal term is denoised by wavelet transform (WT). A static test was performed on an interferential FOG to verify the effective-ness of the algorithm and compared with WT and LWT. The experimental results show that the proposed EMD-LWT filtering algorithm has better filtering effect. After processing, the root mean square error (RMSE) of the recon-structed signal is reduced by 63%, which effectively removes the noise in the FOG output.
参考文献

[1] 李绪友, 刘攀, 光星星, 等. 保偏光纤陀螺横向磁场误差的温度依赖性[J].光学学报, 2018, 38(1): 0106006.

    Li X Y, Liu P, Guang X X, et al. Temperature dependence of transverse magnetic error in a polarization maintaining fiber optic gyroscope[J]. Acta Optica Sinica, 2018, 38(1): 0106006.

[2] 律新伟, 武俊勇, 孙丽艳. 单模光纤环热应力双折射仿真分析[J].导航与控制, 2015, 14(3): 94–97.

    Lv X W, Wu J Y, Sun L Y. Thermal stress birefringence simula-tion of single mode optic fiber loop[J]. Navigation and Control, 2015, 14(3): 94–97.

[3] 陈一平 , 梁璀, 张登伟 , 等. 光纤陀螺磁温耦合效应 [J]. 光子学报, 2018, 47(5): 0506005.

    Chen Y P, Liang C, Zheng D W, et al. Magnetic-temperature coupling effect of a fiber optic gyroscope[J]. Acta Photonica Sinica, 2018, 47(5): 0506005.

[4] Dang S W, Tian W F, Qian F. EMD-and LWT-based stochastic noise eliminating method for fiber optic gyro[J]. Measurement, 2011, 44(10): 2190–2193.

[5] Li Z H, Meng Z, Liu T G, et al. A novel method for determining and improving the quality of a quadrupolar fiber gyro coil under temperature variations[J]. Optics Express, 2013, 21(2): 2521–2530.

[6] 吕品, 刘建业, 赖际舟, 等. 光纤陀螺实时小波去噪中的阈值选取[J].弹箭与制导学报, 2009, 29(1): 18–22.

    Lv P, Liu J Y, Lai J Z, et al. Research on threshold algorithm in real-time wavelet de-noising of FOG[J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2009, 29(1): 18–22.

[7] 王庆贺. 基于小波去噪与 DRNN的光纤陀螺随机误差建模研究 [J].航空兵器, 2015(4): 16–20.

    Wang Q H. Research of gyro random error modeling based on the wavelet and DRNN[J]. Aero Weaponry, 2015(4): 16–20.

[8] Huang N E, Shen Z, Long S R, et al. The empirical mode de-composition and the Hilbert spectrum for nonlinear and non-stationary time series analysis[J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 1998, 454(1971): 903–995.

[9] Komaty A, Boudraa A O, Augier B, et al. EMD-based filtering using similarity measure between probability density functions of IMFs[J]. IEEE Transactions on Instrumentation and Mea-surement, 2014, 63(1): 27–34.

[10] 席旭刚, 武昊, 罗志增. 基于 EMD自相关的表面肌电信号消噪方法[J].仪器仪表学报, 2014, 35(11): 2494–2500.

    Xi X G, Wu H, Luo Z Z. De-noising method of the sEMG based on EMD autocorrelation[J]. Chinese Journal of Scientific In-strument, 2014, 35(11): 2494–2500.

[11] 刘海江, 刘世高, 李敏. 换挡加速度信号的 EMD和小波阈值降噪方法[J].噪声与振动控制, 2018, 38(2): 198–203.

    Liu H J, Liu S G, Li M. EMD and wavelet threshold denoising method of gear-shift acceleration signals[J]. Noise and Vibra-tion Control, 2018, 38(2): 198–203.

[12] Bekiros S, Nguyen D K, Junior L S, et al. Information diffusion, cluster formation and entropy-based network dynamics in eq-uity and commodity markets[J]. European Journal of Opera-tional Research, 2017, 256(3): 945–961.

[13] Belazi A, El-Latif A A A, Diaconu A V, et al. Chaos-based partial image encryption scheme based on linear fractional and lifting wavelet transforms[J]. Optics and Lasers in Engineering, 2017, 88: 37–50.

[14] Chen X Y, Shen C. Study on temperature error processing technique for fiber optic gyroscope[J]. Optik, 2013, 124(9): 784–792.

[15] 杨秀芳, 张伟, 杨宇祥. 基于提升小波变换的雷达生命信号去噪技术[J].光学学报, 2014, 34(3): 0328003.

    Yang X F, Zhang W, Yang Y X. Denoising technology of radar life signal based on lifting wavelet transform[J]. Acta Optica Si-nica, 2014, 34(03): 0328003.

[16] Li M X, Mao H P, Zhang Y C, et al. Fusion algorithm for mul-ti–sensor images based on PCA and lifting wavelet transfor-mation[J]. New Zealand Journal of Agricultural Research, 2007, 50(5): 667–671.

戴邵武, 郑百东, 戴洪德, 聂子健. 基于EMD-LWT的光纤陀螺阈值去噪[J]. 光电工程, 2019, 46(5): 180333. Dai Shaowu, Zheng Baidong, Dai Hongde, Nie Zijian. Fiber optic gyroscope threshold denoising based on EMD-LWT[J]. Opto-Electronic Engineering, 2019, 46(5): 180333.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!