发光学报, 2020, 41 (8): 984, 网络出版: 2020-08-06  

不同微腔结构有机电致发光器件的电致发光光谱模拟

Spectral Simulation of Electroluminescence Performance of Organic Electroluminescent Devices with Different Microcavity Structures
作者单位
1 吉林建筑大学 材料科学与工程学院, 吉林 长春 130118
2 中国科学院长春光学精密机械与物理研究所 发光学及应用国家重点实验室, 吉林 长春 130033
摘要
采用传输矩阵法对有机电致发光器件(OLED)、微腔有机电致发光器件(MOLED)和耦合微腔有机电致发光器件(CMC)的电致发光光谱(EL)进行了模拟计算。OLED、MOLED和CMC的结构分别为glass/ITO(134 nm)/NPB(74 nm)/Alq3(62 nm)/Al、glass/DBR/ITO(134 nm)/NPB(74 nm)/Alq3(62 nm)/Al和glass/DBR1/filler/DBR2/ITO(134 nm)/NPB(74 nm)/Alq3(62 nm)/Al。通过模拟计算发现: OLED光谱呈宽带发射, 主峰峰值位于561 nm, 肩峰峰值位于495 nm; MOLED光谱呈单峰窄带发射, 峰值位于534 nm; CMC光谱呈双峰窄带发射, 峰值分别位于520 nm和556 nm。MOLED光谱的色纯度最高; OLED与MOLED的光谱积分面积基本相同; CMC的光谱积分面积是OLED或MOLED的1.1倍, 发光效率最高。结果表明, 采用双耦合微腔结构可有效提高OLED的发光效率, 改善发光的色纯度。
Abstract
In this paper, we discuss the influence of different microcavity structures of the organic light-emitting devices(OLEDs) in order to improve the luminescence performance. We use the transfer matrix method to simulate and calculate the electroluminescence spectrum(EL)of the OLED, the microcavity organic light-emitting devices(MOLED) and the coupling microcavity organic light-emitting devices(CMC). And then we compare their EL characteristics. The structures of OLED, MOLED and CMC are glass/ITO(134 nm)/NPB(74 nm)/Alq3(62 nm)/Al, glass/DBR/ITO(134 nm)/NPB(74 nm)/Alq3(62 nm)/Al, and glass/DBR1/filler/DBR2/ITO(134 nm)/NPB(74 nm)/Alq3 (62 nm)/Al, respectively. The simulation results show that, the EL spectrum shape of the OLED has a broad spectrum band with the main peak at 561 nm and the shoulder peak at 495 nm, the MOLED has a narrow EL spectrum with single peak at 534 nm, the CMC has a twin narrow EL spectrum with the peaks at 520 nm and 556 nm respectively. The MOLED has the purest color. The integrated area of the OLED and the MOLED are basically the same. The CMC has the largest integrated area, which is 1.1 times of the former two devices. The simulation results show that CMC structure can be used to improve the luminescence efficiency and the color purity of the OLED.
参考文献

[1] TANG C W,VANSLYKE S A. Organic electroluminescent diodes [J]. Appl. Phys. Lett., 1987,51(12):913-915.

[2] BALDO M A,THOMPSON M E,FORREST S R. High-efficiency fluorescent organic light-emitting devices using a phosphorescent sensitizer [J]. Nature, 2000,403(6771):750-753.

[3] 彭雪康,林雯嫣,喻叶,等. 高效叠层有机电致发光器件的研制 [J]. 发光学报, 2019,40(10):1281-1287.

    PENG X K,LIN W Y,YU Y,et al.. Fabrication of highly efficient tandem organic light-emitting device [J]. Chin. J. Lumin., 2019,40(10):1281-1287. (in Chinese)

[4] 祖洁,陈平,盛任,等. 高效率的蓝色磷光有机电致发光器件 [J]. 发光学报, 2017,38(4):487-491.

    ZU J,CHEN P,SHENG R,et al.. Highly efficient blue organic light-emitting diodes [J]. Chin. J. Lumin., 2017,38(4):487-491. (in Chinese)

[5] MAZZEO M,MARIANO F,GENCO A,et al.. High efficiency ITO-free flexible white organic light-emitting diodes based on multi-cavity technology [J]. Org. Electron., 2013,14(11):2840-2846.

[6] 关云霞,陈丽佳,陈平,等. 空穴注入层对微腔有机发光二极管光电性能的影响 [J]. 光谱学与光谱分析, 2016,36(3):648-652.

    GUAN Y X,CHEN L J,CHEN P,et al.. Influence of MnO3 on photoelectric performance in organic light emitting diodes [J]. Spectrosc. Spectral Anal., 2016,36(3):648-652. (in Chinese)

[7] 张春玉,王庆凯,荣华,等. 绿色磷光微腔有机电致发光器件研究 [J]. 光学学报, 2015,35(6):0623002-1-6.

    ZHANG C Y,WANG Q K,RONG H,et al.. Study of green phosphorescent microcavity organic light-emitting devices [J]. Acta Opt. Sinica, 2015,35(6):0623002-1-6. (in Chinese)

[8] JIANG X F,SHAO L B,ZHANG S X,et al.. Chaos-assisted broadband momentum transformation in optical microresonators [J]. Science, 2017,358(6361):344-347.

[9] 张春玉,刘星元,套格套,等. 耦合结构有机微腔的光致发光特性 [J]. 发光学报, 2007,28(3):349-352.

    ZHANG C Y,LIU X Y,TAO G T,et al.. Optical properties of organic film in a coupled microcavity [J]. Chin. J. Lumin., 2007,28(3):349-352. (in Chinese)

[10] BAYINDIR M,TANRISEVEN S,AYDINLI A,et al.. Strong enhancement of spontaneous emission in amorphous-silicon-nitride photonic crystal based coupled-microcavity structures [J]. Appl. Phys. A, 2001,73(1):125-127.

[11] STANLEY R P,HOUDR R,OESTERLE U,et al.. Coupled semiconductor microcavities [J]. Appl. Phys. Lett., 1994,65(16):2093-2095.

[12] BROSSARD F S F,REID B P L,CHAN C C S,et al.. Confocal microphotoluminescence mapping of coupled and detuned states in photonic molecules [J]. Opt. Express, 2013,21(14):16934-16945.

[13] HAMEL P,HADDADI S,RAINERI F,et al.. Spontaneous mirror-symmetry breaking in coupled photonic-crystal nanolasers [J]. Nat. Photonics, 2015,9(5):311-315.

[14] BORISKINA S V. Photonic molecules and spectral engineering [M]. CHREMMOS I,SCHWELB O,UZUNOGLU N. Photonic Microresonator Research and Applications. Boston,MA:Springer, 2010:393-421.

[15] 张春玉,王庆凯,秦莉,等. 微腔有机电致发光器件角度依赖性的模拟与实验验证 [J]. 发光学报, 2015,36(4):454-458.

    ZHANG C Y,WANG Q K,QIN L,et al.. Simulation and experimental verification for the angle dependence of the microcavity organic light emitting device [J]. Chin. J. Lumin., 2015,36(4):454-458. (in Chinese)

[16] DODABALAPUR A,ROTHBERG L J,JORDAN R H,et al.. Physics and applications of organic microcavity light emitting diodes [J]. J. Appl. Phys., 1996,80(12):6954-6964.

张春玉, 徐海楠, 宋悦. 不同微腔结构有机电致发光器件的电致发光光谱模拟[J]. 发光学报, 2020, 41(8): 984. ZHANG Chun-yu, XU Hai-nan, SONG Yue. Spectral Simulation of Electroluminescence Performance of Organic Electroluminescent Devices with Different Microcavity Structures[J]. Chinese Journal of Luminescence, 2020, 41(8): 984.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!