光学学报, 2017, 37 (1): 0106002, 网络出版: 2017-01-13   

啁啾倾斜Bragg光纤光栅制作及Raman滤除研究 下载: 525次

Fabrication of Chirped and Tilted Fiber Bragg Gratings and Investigation of Raman Filtering Effect
作者单位
国防科学技术大学光电科学与工程学院, 湖南 长沙 410073
摘要
受激拉曼散射(SRS)是制约光纤激光器功率进一步提升的重要因素之一。提出利用啁啾倾斜Bragg光纤光栅(CTFBG)抑制SRS, 针对1018 nm光纤激光SRS信号设计并制作了1066 nm啁啾倾斜光纤光栅, 搭建实验系统, 对拉曼信号滤除效果进行了验证。结果表明, 设计的CTFBG对1级SRS信号的抑制接近20 dB, 取得了很好的效果。研究结果对利用CTFBG抑制大功率光纤激光振荡器和放大器中的SRS, 进一步提高光纤激光的效率和输出功率具有一定意义。
Abstract
Stimulated Raman scattering (SRS) is one of the important factors which restrict the further improvement of fiber laser power. We propose that using chirped and tilted fiber Bragg gratings (CTFBGs) can suppress SRS. According to the design of optical fiber laser SRS signal of 1018 nm, a CTFBG of 1066 nm is fabricated. An experimental system is established to verify the filtering effect of Raman signal. Results show that the designed CTFBG can suppress the first-order SRS signal about 20 dB, and achieve a good effect. The research results have certain significance for suppressing SRS in high power fiber laser oscillator and amplifier with CTFBG, and for further improving the efficiency and output power of fiber lasers.
参考文献

[1] Hill K O, Fujii Y, Johnson D C, et al. Photosensitivity in optical fiber waveguides: Application to reflection fiber fabrication[J]. Applied Physics Letters, 1978, 32(10): 647-649.

[2] Meltz G, Morey W W, Glenn W H. In-fibre Bragg grating tap[C]. Optical Fiber Communication Conference, San Francisco, 1990, TUG: TUG1.

[3] Kashyap R, Wyatt R, Campbell R J. Wideband gain flattened erbium fiber amplifier using a photosensitive fiber blazed grating[J]. Electronics Letters, 1993, 29(2): 154-156.

[4] Kashyap R, Wyatt R, Mckee P F. Wavelength flattened saturated erbium amplifier using multiple side-tip Bragg gratings[J]. Electronics Letters, 1993, 29(11): 1025-1026.

[5] Kerrinckx E, Hidayat A, Niay P. Suppression of discrete cladding mode resonances in fiber slanted Bragg gratings for gain equalisation[J]. Optics Express, 2006, 14(4): 1388-1394.

[6] Haggans C W, Singh H, Varner W F, et al. Narrow-band rejection filters with negligible back reflection using tilted photoinduced gratings in single-mode fibers[J]. IEEE Photonics Technology Letters, 1998, 10(5): 690-692.

[7] Mihailov S J, Walker R B, Lu P, et al. UV-induced polarisation-dependent loss in tilted fiber Bragg gratings: Application of a PDL equaliser[J]. IEE Proceedings-Optoelectronics, 2002, 149(56): 211-216.

[8] Zhou K, Chen X, Simpson A G, et al. High extinction ratio in-fiber polarizer based on 45° tilted fiber Bragg gratings[J]. Optics Letters, 2005, 30(11): 1285-1287.

[9] Chen C, Caucheteur C, Mégret P, et al. The sensitivity characteristics of tilted fiber Bragg grating sensors with different cladding thickness[J]. Measurement Science and Technology, 2007, 18(10): 3117-3122.

[10] Baek S, Jeong Y, Lee B. Characteristics of short-period blazed fibre Bragg gratings for use as macro-bending sensors[J]. Applied Optics, 2002, 41(4): 631-636.

[11] Caucheteur C, Chah K, Lhommé F, et al. Simultaneous bend and temperature sensor using tilted FBG[C]. SPIE, 2005, 5855: 707-710.

[12] Maguis S, Laffont G, Ferdinand P, et al. Biofunctionalized tilted fiber Bragg gratings for label-free immunosensing[J]. Optics Express, 2008, 16(23): 19049-19062.

[13] Yanina Y, Shevchenko Y, Albert J. Plasmon resonances in gold-coated tilted fiber Bragg gratings[J]. Optics Letters, 2007, 32(3): 211-213.

[14] Yang D X, Du L, Xu Z Q, et al. Magnetic field sensing based on tilted fiber Bragg grating coated with nanoparticle magnetic fluid[J]. Applied Physics Letters, 2014, 104(6): 061903.

[15] Liu F, Guo T, Wu C, et al. Wideband-adjustable reflection-suppressed rejection filters using chirped and tilted fiber gratings[J]. Optics Express, 2014, 22(20): 24430-24438.

[16] Richardson D J, Nilsson J, Clarkson W A. High power fiber lasers: Current status and future perspectives[J]. Journal of the Optical Society of America B, 2010, 27(11): B63-B92.

[17] Nilsson J, Payne D N. High-power fiber lasers[J]. Science, 2011, 332(6032): 921-922.

[18] Shiner B. The impact of fiber laser technology on the world wide material processing market[C]. Proceedings of CLEO, 2013, AF2J: AF2J.1.

[19] 王文亮. 大功率光纤激光器受激拉曼散射研究[D]. 长沙: 国防科学技术大学, 2014.

    Wang Wenliang. Stimulated Raman scattering in high power fiber lasers[D]. Changsha: National University of Defense Technology, 2014.

[20] Wang Y, Xu C Q, Hong P. Analysis of Raman and thermal effects in kilowatt fiber lasers[J]. Optics Communications, 2004, 242(4): 487-502.

[21] Fini J M, Mermelstein M D, Yan M F, et al. Distributed suppression of stimulated Raman scattering in an Yb-doped filter-fiber amplifier[J]. Optics Letters, 2006, 31(17): 2550-2552.

[22] Nodop D, Jauregui C, Jansen F, et al. Suppression of stimulated Raman scattering employing long period gratings in double-clad fiber amplifiers[J]. Optics Letters, 2010, 35(17): 2982-2984.

[23] Albert J, Shao L Y, Caucheteur C. Tilted fiber Bragg grating sensors[J]. Laser and Photonics Review, 2013, 7(1): 83-108.

[24] Erdogan T. Cladding-mode resonances in short and long period fiber grating filters[J]. Journal of Optical Society of America A, 1997, 14(8): 1760-1773.

[25] Agrawal G P. Nonlinear fiber optics[M]. New York: Academic Press, 1995: 195-211.

张宇菁, 王蒙, 王泽锋, 曹涧秋, 肖虎. 啁啾倾斜Bragg光纤光栅制作及Raman滤除研究[J]. 光学学报, 2017, 37(1): 0106002. Zhang Yujing, Wang Meng, Wang Zefeng, Cao Jianqiu, Xiao Hu. Fabrication of Chirped and Tilted Fiber Bragg Gratings and Investigation of Raman Filtering Effect[J]. Acta Optica Sinica, 2017, 37(1): 0106002.

本文已被 5 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!