Photonic Sensors, 2019, 9 (2): 02189, Published Online: Apr. 12, 2019  

A Coil Constant Calibration Method Based on the Phase-Frequency Response of Alkali Atomic Magnetometer

     *
Author Affiliations
Abstract
We propose an in-situ method to calibrate the coil constants of the optical atomic magnetometer. This method is based on measuring the Larmor precession of spin polarized alkali metal atoms and has been demonstrated on a K-Rb hybrid atomic magnetometer. Oscillation fields of different frequencies are swept on the transverse coil. By extracting the resonance frequency through phase-frequency analysis of electron spin projection, the coil constants are calibrated to be 323.1 ± 0.28 nT/mA, 108 ± 0.04 nT/Ma, and 185.8 ± 1.03 nT/mA along the X, Y, and Z directions, respectively.
References

[1] I. K. Kominis, T. W. Kornack, J. C. Allred, and M. V. Romalis, “A subfemtotesla multichannel atomic magnetometer,” Nature, 2003, 422(6932): 596–599.

[2] J. C. Allred, R. N. Lyman, T. Kornack, and M. Romalis, “High-sensitivity atomic magnetometer unaffected by spin-exchange relaxation,” Physical Review Letters, 2002, 89(13): 130801-1.130801-4.

[3] Y. Chen, W. Quan, L. H. Duan, Y. Lu, L. W. Jiang, and J. C. Fang, “Spin-exchange collision mixing of the K and Rb ac Stark shifts,” Physical Review A, 2016, 94(52): 052705-1.052705-6.

[4] D. Sheng, S. Li, N. Dural, and M. Romalis, “Subfemtotesla scalar atomic magnetometry using multipass cells,” Physical Review Letters, 2013, 110(16): 160802-1.160802-5.

[5] T. H. Sander, J. Preusser, R. Mhaskar, J. Kitching, L. Trahms, and S. Knappe, “Magnetoencephalography with a chip-scale atomic magnetometer,” Biomedical Optics Express, 2012, 3(5): 981-990.

[6] R. Wyllie, M. Kauer, G. S. Smetana, R. T. Wakai, and T. G. Walker, “Magnetocardiography with a modular spin-exchange relaxation-free atomic magnetometer array,” Physics in Medicine & Biology, 2012, 57(9): 2619.2632.

[7] T. Wang, D. F. J. Kimball, A. O. Sushkov, D. Aybas, J. W. Blanchard, G. Centers, et al., “Application of spin-exchange relaxation-free magnetometry to the cosmic axion spin precession experiment,” Physics of the Dark Universe, 2018, 19: 27.35.

[8] J. M. Brown, “A new limit on Lorentz- and CPT-violating neutron spin interactions using potassium-Helium comagnetometer,” Ph.D. da issertation, Princeton University, Princeton, NJ, USA, 2011.

[9] Z. C. Ding, J. Yuan, G. F. Lu, Y. Y. Li, and X. W. Long, “Three-axis atomic magnetometer employing longitudinal field modulation,” IEEE Photonics Journal, 2017, 9(5): 5300209-1.5300209-9.

[10] H. C. Huang, H. F. Dong, X. Y. Hu, L. Chen, and Y. Gao, “Three-axis atomic magnetometer based on spin precession modulation,” Applied Physics Letters, 2015, 107(18): 227.234.

[11] S. Afach, G. Ban, G. Bison, K. Bodek, Z. Chowdhuri, Z. Gruji′c, et al., “Highly stable atomic vector magnetometer based on free spin precession,” Optics Express, 2015, 23(17): 22108-1.22108-12.

[12] H. F. Dong, H. B. Lin, and X. B. Tang, “Atomic-signal-based zero-field finding technique for unshielded atomic vector magnetometer,” IEEE Sensors Journal, 2013, 13(1): 186.189.

[13] Z. M. Li, R. T. Wakai, and T. G. Walker, “Parametric modulation of an atomic magnetometer,” Applied Physics Letters, 2006, 89(13): 23575531-1.23575531-8.

[14] S. J. Seltzer and M. Romalis, “Unshielded three-axis vector operation of a spin-exchange-relaxation-free atomic magnetometer,” Applied Physics Letters, 2004, 85(20): 4804.4806.

[15] H. U. Auster, K. H. Glassmeier, W. Magnes, O. Aydogar, W. Baumjohann, D. D. Constantinescu, et al., “The THEMIS fluxgate magnetometer,” Space Science Reviews, 2008, 141(1.4): 235.264.

[16] H. Zhang, S. Zou, and X. Y. Chen, “A method for calibrating coil constants by using an atomic spin co-magnetometer,” The European Physical Journal D, 2016, 70(10): 203-1.203-5.

[17] L. L. Chen, B. Q. Zhou, G. Q. Lei, W. F. Wu, J. Wang, Y. Y. Zhai, et al., “A method for calibrating coil constants by using the free induction decay of noble gases,” AIP Advances, 2017, 7(7): 2227.2234.

[18] Y. Li, M. Ding, X. J. Liu, H. W. Cai,J. P. Zhao, and J. C. Fang, “Suppression method of AC-stark shifts in atomic magnetometers,” IEEE Photonics Journal, 2018, 10(5): 5300207-1.5300207-5.

[19] J. X. Lu, W. Quan, D. Ming, L. Qi, and J. C. Fang, “Suppression of light shift for high-density alkali-metal atomic magnetometer,” IEEE Sensors, 2018, 99: 2877771-1.2877771-5.

[20] M. Romalis, “Hybrid optical pumping of optically dense alkali metal vapor without quenching gas,” Physical Review Letters, 2010, 105(24): 243001-1.243001-4.

[21] Y. Ito, H. Ohnishi, K. Kamada, and T. Kobayashi, “Development of an optically pumped atomic magnetometer using a K-Rb hybrid cell and its application to magnetocardiography,” AIP Advances, 2012, 2(3): 032127-1.032127-4.

[22] F. Bloch, W. W. Hansen, and M. E. Packard, “The nuclear induction experiment,” Physics Review, 1946, 70(7.8): 474.485.

[23] S. Seltzer, “Developments in alkali metal atomic magnetometry,” Ph.D. dissertation, Princeton University, Princeton, NJ, USA, 2008.

[24] J. Fang, T. Wang, W. Quan, H. Yuan, Y. Li, H. Zhang, et al., “In situ magnetic compensation for potassium spin-exchange relaxation-free magnetometer considering probe beam pumping effect,” Review of Scientific Instruments, 2014, 85(6): 063108-1.063108-7.

[25] L. L. Chen, B. Q. Zhou, G. Q. Lei, W. F. Wu, Y. Y. Zhai, Z. Wang, et al., “A method for measuring the spin polarization of 129Xe by using an atomic magnetometer,” AIP Advances, 2017, 7: 085221-1.085221-8.

, , , , . A Coil Constant Calibration Method Based on the Phase-Frequency Response of Alkali Atomic Magnetometer[J]. Photonic Sensors, 2019, 9(2): 02189.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!