Photonics Research, 2019, 7 (12): 12001493, Published Online: Nov. 22, 2019   

Third-order nonlinear optical properties of WTe2 films synthesized by pulsed laser deposition Download: 599次

Author Affiliations
1 Shaanxi Joint Laboratory of Graphene, State Key Laboratory Incubation Base of Photoelectric Technology and Functional Materials, International Collaborative Center on Photoelectric Technology and Nano Functional Materials, Institute of Photonics & Photon-Technology, Northwest University, Xi’an 710069, China
2 National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, School of Electronic Science and Engineering, Nanjing University, Nanjing 210093, China
3 School of Electronic Engineering, Xi’an University of Posts and Telecommunications, Xi’an 710121, China
4 e-mail: xfwang@nju.edu.cn
5 e-mail: rzy@nwu.edu.cn
Copy Citation Text

Mi He, Yequan Chen, Lipeng Zhu, Huan Wang, Xuefeng Wang, Xinlong Xu, Zhanyu Ren. Third-order nonlinear optical properties of WTe2 films synthesized by pulsed laser deposition[J]. Photonics Research, 2019, 7(12): 12001493.

References

[1] E. Arimondo, F. Casagrande, L. A. Lugiato, P. Glorieux. Repetitive passive Q-switching and bistability in lasers with saturable absorbers. Appl. Phys. B, 1983, 30: 57-77.

[2] Y. C. Chen, N. R. Raravikar, L. S. Schadler, P. M. Ajayan, Y. P. Zhao, T. M. Lu, G. C. Wang, X. C. Zhang. Ultrafast optical switching properties of single-wall carbon nanotube polymer composites at 1.5  μm. Appl. Phys. Lett., 2002, 81: 975-977.

[3] L. G. Deng, H. K. Liu. Nonlinear optical limiting of the azo dye methyl-red doped nematic liquid crystalline films. Opt. Eng., 2003, 42: 2936-2941.

[4] K. Inoue, H. Toba. Wavelength conversion experiment using fiber four-wave mixing. IEEE Photon. Technol. Lett., 1992, 4: 69-72.

[5] J. L. Bredas, C. Adant, P. Tackx, A. Persoons, B. Pierce. Third-order nonlinear optical response in organic materials: theoretical and experimental aspects. Chem. Rev., 1994, 94: 243-278.

[6] Y. Li, N. Dong, S. Zhang, X. Zhang, Y. Feng, K. Wang, L. Zhang, J. Wang. Giant two-photon absorption in monolayer MoS2. Laser Photon. Rev., 2015, 9: 427-434.

[7] X. F. Wang, Z. W. Wang, J. G. Yu, C. L. Liu, X. J. Zhao, Q. H. Gong. Large and ultrafast third-order optical nonlinearity of GeS2-Ga2S3-CdS chalcogenide glass. Chem. Phys. Lett., 2004, 399: 230-233.

[8] X. Q. Yan, X. L. Zhang, S. Shi, Z. B. Liu, J. G. Tian. Third-order nonlinear susceptibility tensor elements of CS2 at femtosecond time scale. Opt. Express, 2011, 19: 5559-5564.

[9] M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, X. Zhang. A graphene-based broadband optical modulator. Nature, 2011, 474: 64-67.

[10] Z. Sun, A. Martinez, F. Wang. Optical modulators with 2D layered materials. Nat. Photonics, 2016, 10: 227-238.

[11] C. Lee, X. Wei, J. W. Kysar, J. Hone. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science, 2008, 321: 385-388.

[12] X. Dai, Z. Li, K. Du, H. Sun, Y. Yang, X. Zhang, X. Ma, J. Wang. Facile synthesis of in-situ nitrogenated graphene decorated by few-layer MoS2 for hydrogen evolution reaction. Electrochim. Acta, 2015, 171: 72-80.

[13] A. Martinez, Z. Sun. Nanotube and graphene saturable absorbers for fibre lasers. Nat. Photonics, 2013, 7: 842-845.

[14] X. Liu, Q. Guo, J. Qiu. Emerging low-dimensional materials for nonlinear optics and ultrafast photonics. Adv. Mater., 2017, 29: 1605886.

[15] K. Wang, J. Wang, J. Fan, M. Lotya, A. O’Neill, D. Fox, Y. Feng, X. Zhang, B. Jiang, Q. Zhao. Ultrafast saturable absorption of two-dimensional MoS2 nanosheets. ACS Nano, 2013, 7: 9260-9267.

[16] Z. Luo, Y. Li, M. Zhong, Y. Huang, X. Wan, J. Peng, J. Weng. Nonlinear optical absorption of few-layer molybdenum diselenide (MoSe2) for passively mode-locked soliton fiber laser. Photon. Res., 2015, 3: A79-A86.

[17] C. Torres-Torres, N. Perea-López, A. L. Elías, H. R. Gutiérrez, D. A. Cullen, A. Berkdemir, F. López-Urías, H. Terrones, M. Terrones. Third order nonlinear optical response exhibited by mono- and few-layers of WS2. 2D Mater., 2016, 3: 021005.

[18] C. Quan, M. He, C. He, Y. Huang, L. Zhu, Z. Yao, X. Xu, C. Lu, X. Xu. Transition from saturable absorption to reverse saturable absorption in MoTe2 nano-films with thickness and pump intensity. Appl. Surf. Sci., 2018, 457: 115-120.

[19] Y. Zhang, T. R. Chang, B. Zhou, Y. T. Cui, H. Yan, Z. Liu, F. Schmitt, J. Lee, R. Moore, Y. Chen, H. Lin, H. T. Jeng, S. K. Mo, Z. Hussain, A. Bansil, Z. X. Shen. Direct observation of the transition from indirect to direct bandgap in atomically thin epitaxial MoSe2. Nat. Nanotechnol., 2014, 9: 111-115.

[20] W. Jin, P. C. Yeh, N. Zaki, D. Zhang, J. T. Sadowski, A. Al-Mahboob, A. M. van der Zande, D. A. Chenet, J. I. Dadap, I. P. Herman, P. Sutter, J. Hone, R. M. Osgood. Direct measurement of the thickness-dependent electronic band structure of MoS2 using angle-resolved photoemission spectroscopy. Phys. Rev. Lett., 2013, 111: 106801.

[21] Y. Ding, Y. Wang, J. Ni, L. Shi, S. Shi, W. Tang. First principles study of structural, vibrational and electronic properties of graphene-like MX2 (M=Mo, Nb, W, Ta; X=S, Se, Te) monolayers. Physica B, 2011, 406: 2254-2260.

[22] Q. Zhao, Y. Guo, Y. Zhou, X. Xu, Z. Ren, J. Bai, X. Xu. Flexible and anisotropic properties of monolayer MX2 (M = Tc and Re; X = S, Se). J. Phys. Chem. C, 2017, 121: 23744-23751.

[23] M. N. Ali, J. Xiong, S. Flynn, J. Tao, Q. D. Gibson, L. M. Schoop, T. Liang, N. Haldolaarachchige, M. Hirschberger, N. P. Ong, R. J. Cava. Large, non-saturating magnetoresistance in WTe2. Nature, 2014, 514: 205-208.

[24] J. Augustin, V. Eyert, T. Böker, W. Frentrup, H. Dwelk, C. Janowitz, R. Manzke. Electronic band structure of the layered compound. Phys. Rev. B, 2000, 62: 10812-10823.

[25] H. Y. Lv, W. J. Lu, D. F. Shao, Y. Liu, S. G. Tan, Y. P. Sun. Perfect charge compensation in WTe2 for the extraordinary magnetoresistance: from bulk to monolayer. Europhys. Lett., 2015, 110: 37004.

[26] W. D. Kong, S. F. Wu, P. Richard, C. S. Lian, J. T. Wang, C. L. Yang, Y. G. Shi, H. Ding. Raman scattering investigation of large positive magnetoresistance material WTe2. Appl. Phys. Lett., 2015, 106: 081906.

[27] Q. Song, H. Wang, X. Xu, X. Pan, Y. Wang, F. Song, X. Wan, L. Dai. The polarization-dependent anisotropic Raman response of few-layer and bulk WTe2 under different excitation wavelengths. RSC Adv., 2016, 6: 103830.

[28] Q. Song, X. Pan, H. Wang, K. Zhang, Q. Tan, P. Li, Y. Wan, Y. Wang, X. Xu, M. Lin, X. Wan, F. Song, L. Dai. The in-plane anisotropy of WTe2 investigated by angle-dependent and polarized Raman spectroscopy. Sci. Rep., 2016, 6: 29254.

[29] Y. Kim, Y. I. Jhon, J. Park, J. H. Kim, S. Lee, Y. M. Jhon. Anomalous Raman scattering and lattice dynamics in mono- and few-layer WTe2. Nanoscale, 2016, 8: 2309-2316.

[30] G. Cunningham, D. Hanlon, N. McEvoy, G. S. Duesberg, J. N. Coleman. Large variations in both dark- and photoconductivity in nanosheet networks as nanomaterial is varied from MoS2 to WTe2. Nanoscale, 2015, 7: 198-208.

[31] J. Jiang, F. Tang, X. C. Pan, H. M. Liu, X. H. Niu, Y. X. Wang, D. F. Xu, H. F. Yang, B. P. Xie, F. Q. Song, P. Dudin, T. K. Kim, M. Hoesch, P. K. Das, I. Vobornik, X. G. Wan, D. L. Feng. Signature of strong spin-orbital coupling in the large nonsaturating magnetoresistance material WTe2. Phys. Rev. Lett., 2015, 115: 166601.

[32] A. Kumar, P. K. Ahluwalia. Electronic structure of transition metal dichalcogenides monolayers 1H-MX2 (M = Mo, W; X = S, Se, Te) from ab-initio theory: new direct band gap semiconductors. Eur. Phys. J. B, 2012, 85: 186.

[33] D. Mao, B. Du, D. Yang, S. Zhang, Y. Wang, W. Zhang, X. She, H. Cheng, H. Zeng, J. Zhao. Nonlinear saturable absorption of liquid-exfoliated molybdenum/tungsten ditelluride nanosheets. Small, 2016, 12: 1489-1497.

[34] J. Koo, Y. I. Jhon, J. Park, J. Lee, Y. M. Jhon, J. H. Lee. Near-infrared saturable absorption of defective bulk-structured WTe2 for femtosecond laser mode-locking. Adv. Funct. Mater., 2016, 26: 7454-7461.

[35] W. Gao, L. Huang, J. Xu, Y. Chen, C. Zhu, Z. Nie, Y. Li, X. Wang, Z. Xie, S. Zhu, J. Xu, X. Wan, C. Zhang, Y. Xu, Y. Shi, F. Wang. Broadband photocarrier dynamics and nonlinear absorption of PLD-grown WTe2 semimetal films. Appl. Phys. Lett., 2018, 112: 171112.

[36] M. Gao, M. Zhang, W. Niu, Y. Chen, M. Gu, H. Wang, F. Song, P. Wang, S. Yan, F. Wang, X. Wang, X. Wang, Y. Xu, R. Zhang. Tuning the transport behavior of centimeter-scale WTe2 ultrathin films fabricated by pulsed laser deposition. Appl. Phys. Lett., 2017, 111: 031906.

[37] X. Zhang, S. Zhang, C. Chang, Y. Feng, Y. Li, N. Dong, K. Wang, L. Zhang, W. J. Blau, J. Wang. Facile fabrication of wafer-scale MoS2 neat films with enhanced third-order nonlinear optical performance. Nanoscale, 2015, 7: 2978-2986.

[38] D. Mueller, A. Shih, E. Roman, T. Madey, R. Kurtz, R. Stockbauer. A synchrotron radiation study of BaO films on W(001) and their interaction with H2O, CO2, and O2. J. Vac. Sci. Technol. A, 1988, 6: 1067-1071.

[39] G. P. Halada, C. R. Clayton. Comparison of Mo-N and W-N synergism during passivation of stainless steel through X-ray photoelectron spectroscopy and electrochemical analysis. J. Vac. Sci. Technol. A, 1993, 11: 2342-2347.

[40] S. F. Ho, S. Contarini, J. Rabalais. Ion-beam-induced chemical changes in the oxyanions (Moyn-) and oxides (Mox) where M = chromium, molybdenum, tungsten, vanadium, niobium and tantalum. J. Phys. Chem., 1987, 91: 4779-4788.

[41] Y. Jugnet, N. S. Prakash, L. Porte, T. M. Duc, T. T. A. Nguyen, R. Cinti, H. C. Poon, G. Grenet. Photoelectron diffraction on clean W(110) surface and bulk 4f core levels. Phys. Rev. B, 1988, 37: 8066-8071.

[42] A. J. Ricco, H. S. White, M. S. Wrighton. X-ray photoelectron and Auger electron spectroscopic study of the CdTe surface resulting from various surface pretreatments: correlation of photoelectrochemical and capacitance-potential behavior with surface chemical composition. J. Vac. Sci. Technol. A, 1984, 2: 910-915.

[43] W. E. Sartz, K. J. Wynne, D. M. Hercules. X-ray photoelectron spectroscopic investigation of Group VIA elements. Anal. Chem., 1971, 43: 1884-1887.

[44] F. Ye, J. Lee, J. Hu, Z. Mao, J. Wei, P. X. Feng. Environmental instability and degradation of single- and few-layer WTe2 nanosheets in ambient conditions. Small, 2016, 12: 5802-5808.

[45] M. K. Jana, A. Singh, D. J. Late, C. R. Rajamathi, K. Biswas, C. Felser, U. V. Waghmare, C. N. Rao. A combined experimental and theoretical study of the structural, electronic and vibrational properties of bulk and few-layer Td-WTe2. J. Phys. Condens. Matter, 2015, 27: 285401.

[46] S. Ijaz, A. Mahendru, D. Sanderson. Sensitive measurement of optical nonlinearities using a single beam. IEEE J. Quantum Electron., 2002, 26: 760-769.

[47] G. Kresse. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B, 1996, 54: 11169-11186.

[48] J. P. Perdew, K. Burke, M. Ernzerhof. Generalized gradient approximation made simple. Phys. Rev. Lett., 1996, 77: 3865-3868.

[49] Z. Burshtein, P. Blau, Y. Kalisky, Y. Shimony, M. R. Kikta. Excited-state absorption studies of Cr4+ ions in several garnet host crystals. IEEE J. Quantum Electron., 2002, 34: 292-299.

[50] M. Sheik-Bahae, A. A. Said, E. W. Van Stryland. High-sensitivity, single-beam n2 measurements. Opt. Lett., 1989, 14: 955-957.

[51] T. K. Gustafson, P. L. Kelley, R. Y. Chiao, R. G. Brewer. Self-trapping in media with saturation of the nonlinear index. Appl. Phys. Lett., 1968, 12: 165-168.

[52] A. D. Boardman, S. Saltiel, S. Tanev. High-order nonlinear phase shift caused by cascaded third-order processes. Opt. Lett., 1997, 22: 148-150.

[53] BoydR. W.LukishovaS. G.ShenY. R., Self-focusing: Past and Present (Springer, 2009).

[54] A. A. Said, D. J. Hagan, E. W. V. Stryland, J. Wang, J. Young, M. Sheikbahae, T. H. Wei. Determination of bound-electronic and free-carrier nonlinearities in ZnSe, GaAs, CdTe, and ZnTe. J. Opt. Soc. Am. B, 1992, 9: 405-414.

[55] S. Lu, C. Zhao, Y. Zou, S. Chen, Y. Chen, Y. Li, H. Zhang, S. Wen, D. Tang. Third order nonlinear optical property of Bi2Se3. Opt. Express, 2013, 21: 2072-2082.

[56] S. Bikorimana, P. Lama, A. Walser, R. Dorsinville, S. Anghel, A. Mitioglu, A. Micu, L. Kulyuk. Nonlinear optical responses in two-dimensional transition metal dichalcogenide multilayer: WS2, WSe2, MoS2 and Mo0.5W0.5S2. Opt. Express, 2016, 24: 20685-20695.

[57] J. Li, C. G. Duan, Z. Q. Gu, D. S. Wang. Linear optical properties and multiphoton absorption of alkali halides calculated from first principles. Phys. Rev. B, 1998, 57: 2222-2228.

[58] K. Wang, Y. Feng, C. Chang, J. Zhan, C. Wang, Q. Zhao, J. N. Coleman, L. Zhang, W. J. Blau, J. Wang. Broadband ultrafast nonlinear absorption and nonlinear refraction of layered molybdenum dichalcogenide semiconductors. Nanoscale, 2014, 6: 10530-10535.

Mi He, Yequan Chen, Lipeng Zhu, Huan Wang, Xuefeng Wang, Xinlong Xu, Zhanyu Ren. Third-order nonlinear optical properties of WTe2 films synthesized by pulsed laser deposition[J]. Photonics Research, 2019, 7(12): 12001493.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!