中国激光, 2016, 43 (8): 0801003, 网络出版: 2016-08-10   

两台独立飞秒激光器的脉冲序列与载波包络相位同步 下载: 569次

Timing and Carrier Envelope Phase Synchronization from Two Independent Femtosecond Lasers
作者单位
天津大学精密仪器与光电子工程学院超快激光研究室, 光电信息技术科学教育部重点实验室, 天津 300072
摘要
研究了两台独立运转的掺镱光纤飞秒激光器的脉冲序列与载波包络相位同步。使用平衡光学互相关的方法探测两台激光器的脉冲延迟,控制腔内高速压电陶瓷以锁定两台激光器的重复频率,得到两台激光器的剩余相对时间抖动为380 as。不同的重复频率锁定带宽会对载波包络相位信号产生明显的影响,相比于使用压电陶瓷(低锁定带宽),使用电光调制器锁定重复频率(高锁定带宽)会使载波包络相位产生额外的噪声。将两台激光器的输出脉冲在空间上重合,入射进入平衡探测器,探测到两台激光器的相对载波包络频率信号。使用腔外声光调制器对两台激光器的载波包络相位进行锁定,得到两台激光器的剩余相位噪声为495 mrad。锁定后观测到两激光器的光谱干涉,为相干脉冲合成奠定基础。
Abstract
We studied the timing and carrier envelope phase synchronization from two independent Yb-doped femtosecond lasers. With the balanced optical correlation method used, timing delay of the pulses from two lasers is detected. Two pulse trains are synchronized through controlling the piezoelectric transducer in one of the laser cavities and the residual timing jitter is 380 as. Different repetition rate locking bandwidths yield different carrier envelope phase signal characteristics. Compared with using the piezoelectric transducer (narrow locking bandwidth), using the electro-optic modulator (wide locking bandwidth) leads excess noise to the carrier envelope phase during the repetition rate locking. The output of the two lasers is coincident in space, enters the balanced detector, and the relative carrier envelope frequency signal is detected. The carrier envelope phase is tightly locked by using an external cavity acousto-optic modulator, and the residual phase noise is 495 mrad. The spectrum coherence of the two lasers is achieved, which is the basis of coherent pulse synthesis.
参考文献

[1] Paschotta R. Noise of mode-locked lasers (part I): Numerical model[J]. Applied Physics B, 2004, 79(2): 153-162.

[2] Paschotta R. Noise of mode-locked lasers (part II): Timing jitter and other fluctuations[J]. Applied Physics B, 2004, 79(2): 163-173.

[3] Paschotta R, Schlatter A, Zeller S C, et al. Optical phase noise and carrier-envelope offset noise of mode-locked lasers[J]. Applied Physics B, 2006, 82(2): 265-273.

[4] Newbury N R, Swann W C. Low-noise fiber-laser frequency combs[J]. Journal of the Optical Society of America B, 2007, 24(8): 1756-1770.

[5] 高亢, 郭学石, 赵宁波, 等. 掺镱光子晶体光纤飞秒激光器噪声的测量[J]. 光学学报, 2013, 33(9): 0927001.

    Gao Kang, Guo Xueshi, Zhao Ningbo, et al. Measurement of the noise of Yb-doped femtosecond photonic crystal fiber laser[J]. Acta Optica Sinica, 2013, 33(9): 0927001.

[6] Diddams S A. The evolving optical frequency comb[J]. Journal of the Optical Society of America B, 2010, 27(11): B51-B62.

[7] Lee J, Kim Y J, Lee K, et al. Time-of-flight measurement with femtosecond light pulses[J]. Nature Photonics, 2010, 4(10): 716-720.

[8] 吴学健, 李岩, 尉昊赟, 等. 飞秒光学频率梳在精密测量中的应用[J]. 激光与光电子学进展, 2012, 49(3): 030001.

    Wu Xuejian, Li Yan, Wei Haoyun, et al. Femtosecond optical frequency combs for precision measurement applications[J]. Laser & Optoelectronics Progress, 2012, 49(3): 030001.

[9] Diddams S A, Udem T, Bergquist J C, et al. An optical clock based on a single trapped 199Hg+ ion[J]. Science, 2001, 293(5531): 825-828.

[10] Paschotta R. Timing jitter and phase noise of mode-locked fiber lasers[J]. Optics Express, 2010, 18(5): 5041-5054.

[11] Schibli T R, Kim J, Kuzucu O, et al. Attosecond active synchronization of passively mode-locked lasers by balanced cross correlation[J]. Optics Letters, 2003, 28(11): 947-949.

[12] Washburn B R, Swann W C, Newbury N R. Response dynamics of the frequency comb output from a femtosecond fiber laser[J]. Optics Express, 2005, 13(26): 10622-10633.

[13] Koke S, Grebing C, Frei H, et al. Direct frequency comb synthesis with arbitrary offset and shot-noise-limited phase noise[J]. Nature Photonics, 2010, 4(7): 462-465.

[14] Cox J A, Putnam W P, Sell A, et al. Pulse synthesis in the single-cycle regime from independent mode-locked lasers using attosecond-precision feedback[J]. Optics Letters, 2012, 37(17): 3579-3581.

[15] Fong B J, Lin W T, Wu S Y, et al. Relative carrier-envelope phase stabilization of hybridly synchronized ultrafast Yb and Er fiber-laser systems with the feed-forward scheme[J]. Optics Letters, 2015, 40(6): 966-969.

[16] Chan H S, Hsieh Z M, Liang W H, et al. Synthesis and measurement of ultrafast waveforms from five discrete optical harmonics[J]. Science, 2011, 331(6021): 1165-1168.

[17] 马春阳, 宋有建, 刘新宇, 等. 面向XFEL的km级光纤链路的fs精度时钟分布[J]. 强激光与粒子束, 2016, 28(5): 055102.

    Ma Chunyang, Song Youjian, Liu Xinyu, et al. Femtosecond precision timing distribution over km level stabilized fiber link for application in XFEL[J]. High Power Laser and Particle Beams, 2016, 28(5): 055102.

[18] 马雪莲, 刘璐, 张志刚, 等. 平衡式光学互相关方案测量光脉冲传输抖动的理论和实验研究[J]. 光学学报, 2010, 30(1): 59-64.

    Ma Xuelian, Liu Lu, Zhang Zhigang, et al. Theoretical and experimental study on timing jitter measurement for transmitted pulse using balanced optical cross correlation scheme[J]. Acta Optica Sinica, 2010, 30(1): 59-64.

[19] 阳莎, 瞿荣辉, 刘锐, 等. 声光调制光纤器件及其应用[J]. 激光与光电子学进展, 2006, 43(1): 67-70.

    Yang Sha, Qu Ronghui, Liu Rui, et al. Recent progress of acousto-optic devices and applications in fibers[J]. Laser & Optoelectronics Progress ,2006, 43(1): 67-70.

[20] Song Y, Kim C, Jung K, et al. Timing jitter optimization of mode-locked Yb-fiber lasers toward the attosecond regime[J]. Optics Express, 2011, 19(15): 14518-14525.

[21] Nugent-Glandorf L, Johnson T A, Kobayashi Y, et al. Impact of dispersion on amplitude and frequency noise in a Yb-fiber laser comb[J]. Optics Letters, 2011, 36(9): 1578-1580.

田昊晨, 宋有建, 马春阳, 胡明列, 王清月. 两台独立飞秒激光器的脉冲序列与载波包络相位同步[J]. 中国激光, 2016, 43(8): 0801003. Tian Haochen, Song Youjian, Ma Chunyang, Hu Minglie, Wang Qingyue. Timing and Carrier Envelope Phase Synchronization from Two Independent Femtosecond Lasers[J]. Chinese Journal of Lasers, 2016, 43(8): 0801003.

本文已被 4 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!