光学 精密工程, 2018, 26 (8): 2057, 网络出版: 2018-10-02  

导引头稳定平台的扰动补偿及改进滑模控制

Disturbance compensation and improved sliding-mode control of stabilized platform for seekers
作者单位
1 中国科学院 长春光学精密机械与物理研究所, 吉林 长春 130033
2 中国科学院大学, 北京 100049
3 中国洛阳电子装备试验中心 光电对抗测试评估技术重点实验室, 河南 洛阳 471000
摘要
为提高导引头稳定平台抗扰性, 提出了一种导引头稳定平台的扰动补偿及改进滑模控制策略。首先根据扰动特点将扰动分为摩擦力矩和“剩余扰动”两部分, 基于Stribeck摩擦模型辨识摩擦参数, 并进行摩擦力矩补偿; 采用扩张高增益观测器对“剩余扰动”进行估计, 并给出了扩张高增益观测器的收敛条件。然后设计了改进滑模控制器作为稳定回路的控制器实现伺服控制, 采用Lyapunov函数证明其稳定性。最后, 搭建测试系统分别进行了稳定平台性能测试和导引头性能测试, 用于验证跟踪和抗扰效果。实验结果表明, 跟踪1 (°)/s的梯形波时, 提出的控制器有效地补偿了摩擦, 同时稳态精度提高了0.032 8 (°)/s; 给定三轴转台典型幅值和频率扰动下, 采用提出的控制器时系统隔离度至少提高了0.57%。表明提出的控制器改善了系统抗扰性。
Abstract
A control scheme consisting of a disturbance compensation method and an improved sliding mode controller was proposed to improve the disturbance rejection rate of the stabilized platform used in a seeker. Firstly, the disturbances were divided into friction torque and rest disturbances. The friction parameters based on the Stribeck friction model were identified. An extended high-gain observer was designed to estimate the rest disturbances in the system dynamics, and the convergence condition of the estimation error was set. Meanwhile, the peaking phenomenon of the observer was reduced by saturating the estimates. Then, an improved sliding mode controller was chosen to control the servo system, and a Lyapunov-based analytical method was employed to ensure the convergence of the tracking error. Lastly, experiments on the stabilized platform and the seeker were carried out to validate the control scheme. By using the proposed control scheme, the dead zone at low angular velocity caused by friction was eliminated, and the steady precision was increased by 0.032 8 (°)/s, when tracking a trapezoidal wave of 1 (°)/s. In addition, the disturbance rejection rate was increased by a minimum of 0.57%, when the three-axis turntable was disturbed by typical disturbance conditions. It can be concluded that the control scheme can improve disturbance rejection.
参考文献

[1] 孙高, 朱明超, 贾宏光,等.摩擦自适应补偿在导引头稳定平台控制系统中的应用[J].红外与激光工程, 2013,42(5): 1316-1321.

    SUN G, ZHU M CH, JIA H G, et al..Adaptive friction compensation in seeker stabilized platform servo control system [J]. Infrared and Laser Engineering, 2013,42(5): 1316-1321.(in Chinese)

[2] ZHANG ZH Y, LI ZH Q,ZHOU Q K, et al..Application in prestiction friction compensation for angular velocity loop of inertally stabilized platforms[J]. Chinese Journal of Aeronautics, (2014),27(3): 655-662.

[3] 晋超琼, 张葆, 李贤涛.基于扰动观测器的光电稳定平台摩擦补偿策略[J].吉林大学学报,2017.

    JIN CH Q, ZHANG B, LI X T. Friction compensation strategy of photoelectric stabilized platform based on disturbance observer[J]. Journal of Jilin University (Engineering and Technology Edition), 2017. (in Chinese)

[4] 丛爽, 孙光立, 邓科,等.陀螺稳定平台扰动的自抗扰及其滤波控制[J].光学 精密工程,2016,24(1) : 170-177.

    CONG SH,SUN G L,DENG K. Active disturbance rejection and filter control of gyro-stabilized platform[J].Opt. Precision Eng., 2016,24(1) : 170-177. (in Chinese)

[5] 魏伟, 戴明, 李嘉全,等.航空光电稳定平台的自抗扰控制系统[J]. 光学 精密工程, 2015,23(8): 2297-2305.

    WEI W, DAI M, LI J Q, et al.. ADRC control system for airborne opto-electronic platform[J]. Opt. Precision Eng., 2015,23(8): 2297-2305. (in Chinese)

[6] 汪永阳, 戴明, 丁策.光电稳定平台中高阶扰动观测器的应用[J]. 光学 精密工程, 2015,23(2): 459-466.

    WANG Y Y,DAI M, DING C, et al..Application of high order observer in EO stabilized platform[J]. Opt. Precision Eng., 2015,23(2): 459-466. (in Chinese)

[7] BHAGYASHRI T, SHAILAJA K, AMRUTA M. State and disturbance estimation using higher order sliding modes for seeker System[C]. Third International Conference on Advances in Control and Optimization of Dynamical Systems, Kanpur, India: ACODS, 2014: 348-354.

[8] 周阳, 王磊, 周涛.高精度光电伺服稳定平台积分滑模变结构控制[J].光电工程, 2010,37(7): 12-29.

    ZHOU Y,WANG L, ZHOU T. Integral sliding mode variable structure control of high precision EO servo-stabilized platform[J]. Opto-Electronic Engineering, 2010,37(7): 12-29. (in Chinese)

[9] LEI X SH, ZOU Y, DONG F. A composite control method based on the adaptive RBFNN feedback control and the ESO for two-axis inertially stabilized platforms[J]. ISA Transactions,2015 (59) : 424-433.

[10] ZHOU X Y, ZHAO B L , LIU W. A compound scheme on parameters identi cation and adaptive compensation of nonlinear friction disturbance for the aerial inertially stabilized platform[J]. ISA Transactions, 2017, (67): 293-305.

[11] SONG X R,CHEN H,XUE Y G. Stabilization precision control methods of photoelectric aim-stabilized system[J]. Optics Communications, 2015 (351): 115-120.

[12] JI W, LI Q, XU B. Adaptive fuzzy PID composite control with hysteresis-band switching for line of sight stabilization servo system[J]. Aerospace Science and Technology, 2011, (15): 25-32.

[13] ZOU Y,LEI X SH. A compound control method based on the adaptive neural network and sliding mode control for inertial stable platform[J]. Neurocomputing, 2015, (155): 286-294.

[14] 吴海龙, 贾宏光, 魏群.滚仰式稳定平台质量不平衡分析[J]. 西安交通大学学报,2015,49(5): 108-115.

    WU H L,JIA H G,WEI Q. Analysis of mass imbalance for roll-pitch innertial stabilized platform[J].Journal of Xi'an Jiaotong University, 2015,49(5): 108-115. (in Chinese)

[15] ZHANG B Q,CHU H R,SUN T T, et al.. Thermal calibration of a tri-axial MEMS gyroscope based on Parameter-Interpolation method [J]. Sensors and Actuators A: Physical,2017, 261: 103-116.

[16] 张玉莲, 储海荣, 张宏巍,等.MEMS陀螺随机误差特性研究及补偿[J].中国光学, 2016,9(4): 201-510.

    ZHANG Y L, CHU H R, ZHANG H W. Characterists and compensation method of MEMS gyroscope random error[J]. Chinese Optics,2016,9(4): 201-510. (in Chinese)

[17] KHALIL H K, PRALY L. High-gain observers in nonlinear feedback control[J].International Journal of Robust and Nonlinear Control, 2014,(24): 993-1015.

[18] ANDRIEU V, PRIEUR C,TARBOURIECH S, et al.. A hybrid scheme for reducing peaking in high-gain observers for a class of nonlinear systems[J]. Automatica,2016,(72): 138-146.

[19] KHALIL H K. Cascade high-gain observers in output feedback control[J]. Automatica,2017, (80): 110-118.

[20] PRADHAN R,SUBUDHI B. Double integral sliding mode MPPT control of a photovoltaic system[C]. IEEE Transactions on Control Systems Technology, 2016,24(1): 285-292.

张明月, 刘慧, 赵伟伟, 储海荣, 周满, 苗锡奎, 张帆. 导引头稳定平台的扰动补偿及改进滑模控制[J]. 光学 精密工程, 2018, 26(8): 2057. ZHANG Ming-yue, LIU Hui, ZHAO Wei-wei, CHU Hai-rong, ZHOU Man, MIAO Xi- kui, ZHANG Fan. Disturbance compensation and improved sliding-mode control of stabilized platform for seekers[J]. Optics and Precision Engineering, 2018, 26(8): 2057.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!