激光与光电子学进展, 2017, 54 (2): 020101, 网络出版: 2017-02-10   

基于功率谱的高精度大气湍流相位屏的快速模拟 下载: 771次

Fast Simulation for High Precision Atmospheric Turbulence Phase Screen Based on Power Spectrum
作者单位
太原理工大学物理与光电工程学院, 山西 太原 030024
摘要
分析了基于非均匀采样功率谱反演大气湍流相位屏的算法, 该算法可进行并行处理, 并引入图形处理单元(GPU), 在不影响模拟精度的前提下有效提高了相位屏的模拟速度。利用Kolmogorov功率谱, 基于GPU技术生成大气湍流相位屏; 对相位屏的模拟精度、模拟速度和误差进行统计分析, 并与理论值进行比较。结果表明利用GPU技术模拟的大气湍流相位屏与理论值非常吻合, 具有很高的模拟速度和精度, 大幅提高了大气湍流相位屏的生成速度。
Abstract
An algorithm of inverting atmospheric turbulence phase screen based on non-uniform sampling power spectrum is analyzed. Parallel progressing can be realized in the algorithm, and a graphics processing unit (GPU) is introduced. The speed of phase screen simulation can be effectively improved without affecting the simulation precision. Atmospheric turbulence phase screen is generated based on GPU technique while the Kolmogorov power spectrum is used. The simulation accuracy, simulation speed and error of phase screen are statistically analyzed and compared with theoretical values. Results show that the atmospheric turbulence phase screen simulated by GPU technique is consistent with the theoretical value, and has high simulation speed and high simulation precision. The generation speed of atmospheric turbulence phase screen is greatly improved.
参考文献

[1] Mcglamery B L. Restoration of turbulence-degraded images[J]. Journal of the Optical Society of America, 1967, 57(3): 293-296.

[2] Frehlich R. Simulation of laser propagation in turbulent atmosphere[J]. Applied Optics, 2000, 39(3): 393-397.

[3] 王 锐, 王挺峰, 孙 涛. 任意厚度随机相位屏激光大气传输特性仿真模型[J]. 中国激光, 2013, 40(8): 0813001.

    Wang Rui, Wang Tingfeng, Sun Tao. Simulation model of laser atmospheric transmission characteristics using arbitrary thickness random phase screen[J]. Chinese J Lasers, 2013, 40(8): 0813001.

[4] 王红星, 吴晓军, 宋 博. 海上大气湍流中光束漂移模型分析[J]. 中国激光, 2016, 43(2): 0213001.

    Wang Hongxing, Wu Xiaojun, Song Bo. Modeling and analysis of beam wander in maritime atmospheric turbulence[J]. Chinese J Lasers, 2016, 43(2): 0213001.

[5] 蔡冬梅, 王 昆, 贾 鹏, 等. 功率谱反演大气湍流随机相位屏采样方法的研究[J]. 物理学报, 2014, 63(10): 227-232.

    Cai Dongmei, Wang Kun, Jia Peng, et al. Sampling methods of power spectral density method simulating atmospheric turbulence phase screen[J]. Acta Physica Sinica, 2014, 63(10): 227-232.

[6] 华志励, 李洪平. 基于随机数据元扩张的大气湍流相位屏数值模拟[J]. 光学学报, 2012, 32(5): 0501001.

    Hua Zhili, Li Hongping. Atmospheric turbulence phase screen simulation based on random unit expansion[J]. Acta Optica Sinica, 2012, 32(5): 0501001.

[7] 吴晗玲, 严海星, 李新阳, 等. 基于畸变相位波前分形特征产生矩形湍流相位[J]. 光学学报, 2009, 29(1): 114-119.

    Wu Hanling, Yan Haixing, Li Xinyang, et al. Generation of rectangular turbulence phase screens based on fractal characteristics of distorted wave front[J]. Acta Optica Sinica, 2009, 29(1): 114-119.

[8] 向劲松. 快速傅里叶变换湍流相位屏高频误差的补偿方法[J]. 光学学报, 2014, 34(10): 1001003.

    Xiang Jingsong. High-frequency error compensation method for the fast Fourier transform-based turbulent phase screen[J]. Acta Optica Sinica, 2014, 34(10): 1001003.

[9] 蔡冬梅, 遆培培, 贾 鹏, 等. 非均匀采样的功率谱反演大气湍流相位屏的快速模拟[J]. 物理学报, 2015, 64(22): 248-254.

    Cai Dongmei, Ti Peipei, Jia Peng, et al. Fast simulation of atmospheric turbulence phase screen based on non-uniform sampling[J]. Acta Physica Sinica, 2015, 64(22): 248-254.

[10] Cook S. CUDA programming: A developer′s guide to parallel computing with GPUs[M]. San Francisco: Morgan Kaufmann, 2012.

[11] 张慧敏, 李新阳. 大气湍流畸变相位屏的数值模拟方法研究[J]. 光电工程, 2006, 33(1): 14-19.

    Zhang Huimin, Li Xinyang. Numerical simulation of wave front phase screen distorted by atmospheric turbulence[J]. Opto-Electronic Engineering, 2006, 33(1): 14-19.

[12] 倪小龙, 刘 智, 孔 悦, 等. 基于GPU的液晶大气湍流模拟器波面生成的并行实现[J]. 强激光与粒子束, 2014, 26(3): 61-65.

    Ni Xiaolong, Liu zhi, Kong Yue, et al. Parallel implementation of liquid crystal atmosphere turbulence simulator wave front generation based on GPU[J]. High Power Laser and Particle Beams, 2014, 26(3): 61-65.

[13] 刘 钧, 吴鹏利, 高 明. 偏振部分相干激光斜程湍流大气传输的漂移扩散[J]. 中国激光, 2012, 39(10): 1013001.

    Liu Jun, Wu Pengli, Gao Ming. Wander and spreading of polarized and partially coherent laser propagation in slant path in turbulence atmospheric[J]. Chinese J Lasers, 2012, 39(10): 1013001.

[14] 乔春红, 范承玉, 黄印博, 等. 高能激光大气传输的定标规律[J]. 中国激光, 2010, 37(2): 433-437.

    Qiao Chunhong, Fan Chengyu, Huang Yinbo, et al. Scaling laws of high energy laser propagation through atmosphere[J]. Chinese J Lasers, 2010, 37(2): 433-437.

[15] 饶瑞中, 王世鹏, 刘晓春. 被湍流大气退化的激光光斑: 尺度测量与形变特征描述[J]. 光学学报, 1998, 18(4): 451-456.

    Rao Ruizhong, Wang Shipeng, Liu Xiaochun. Atmospheric-turbulence-degraded light intensity images size measurement and description of deformation characteristics[J]. Acta Optica Sinica, 1998, 18(4): 451-456.

张智露, 蔡冬梅, 贾鹏, 韦宏艳. 基于功率谱的高精度大气湍流相位屏的快速模拟[J]. 激光与光电子学进展, 2017, 54(2): 020101. Zhang Zhilu, Cai Dongmei, Jia Peng, Wei Hongyan. Fast Simulation for High Precision Atmospheric Turbulence Phase Screen Based on Power Spectrum[J]. Laser & Optoelectronics Progress, 2017, 54(2): 020101.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!