Photonics Research, 2020, 8 (10): 10000A39, Published Online: Sep. 18, 2020  

Two-step solvent post-treatment on PTAA for highly efficient and stable inverted perovskite solar cells Download: 861次

Author Affiliations
1 Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Macao SAR, 999078, China
2 Guangdong Key Laboratory of Nano-Micro Material Research, School of Chemical Biology and Biotechnology, Shenzhen Graduate School, Peking University, Shenzhen 518055, China
3 Department of Physics and Chemistry, Faculty of Science and Technology, University of Macau, Macao SAR, 999078, China
4 e-mail: gcxing@um.edu.mo
5 e-mail: huipan@um.edu.mo
Copy Citation Text

Yang Li, Chao Liang, Gaopeng Wang, Jielei Li, Shi Chen, Shihe Yang, Guichuan Xing, Hui Pan. Two-step solvent post-treatment on PTAA for highly efficient and stable inverted perovskite solar cells[J]. Photonics Research, 2020, 8(10): 10000A39.

References

[1] M. A. Green, A. Ho-Baillie, H. J. Snaith. The emergence of perovskite solar cells. Nat. Photonics, 2014, 8: 506-514.

[2] A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc., 2009, 131: 6050-6051.

[3] National Renewable Energy Laboratory(NREL), “Best-research-cell-efficiencies-20200406,” .

[4] J. A. Christians, S. N. Habisreutinger, J. J. Berry, J. M. Luther. Stability in perovskite photovoltaics: a paradigm for newfangled technologies. ACS Energy Lett., 2018, 3: 2136-2143.

[5] H. J. Jung, D. Kim, S. Kim, J. Park, V. P. Dravid, B. Shin. Stability of halide perovskite solar cell devices: in situ observation of oxygen diffusion under biasing. Adv. Mater., 2018, 30: 1802769.

[6] A. Rajagopal, K. Yao, A. K. Y. Jen. Toward perovskite solar cell commercialization: a perspective and research roadmap based on interfacial engineering. Adv. Mater., 2018, 30: 1800455.

[7] L. F. Liu, A. Y. Mei, T. F. Liu, P. Jiang, Y. S. Sheng, L. J. Zhang, H. W. Han. Fully printable mesoscopic perovskite solar cells with organic silane self-assembled monolayer. J. Am. Chem. Soc., 2015, 137: 1790-1793.

[8] L. J. Zuo, Z. W. Gu, T. Ye, W. F. Fu, G. Wu, H. Y. Li, H. Z. Chen. Enhanced photovoltaic performance of CH3NH3PbI3 perovskite solar cells through interfacial engineering using self-assembling monolayer. J. Am. Chem. Soc., 2015, 137: 2674-2679.

[9] E. H. Jung, N. J. Jeon, E. Y. Park, C. S. Moon, T. J. Shin, T.-Y. Yang, J. H. Noh, J. Seo. Efficient, stable and scalable perovskite solar cells using poly(3-hexylthiophene). Nature, 2019, 567: 511-515.

[10] Y. Li, L. Ji, R. Liu, C. Zhang, C. H. Mak, X. Zou, H.-H. Shen, S.-Y. Leu, H.-Y. Hsu. A review on morphology engineering for highly efficient and stable hybrid perovskite solar cells. J. Mater. Chem. A, 2018, 6: 12842-12875.

[11] S. I. Seok, M. Gratzel, N. G. Park. Methodologies toward highly efficient perovskite solar cells. Small, 2018, 14: 1704177.

[12] T. Liu, K. Chen, Q. Hu, R. Zhu, Q. Gong. Inverted perovskite solar cells: progresses and perspectives. Adv. Energy Mater., 2016, 6: 1600457.

[13] S. Ameen, M. A. Rub, S. A. Kosa, K. A. Alamry, M. S. Akhtar, H. S. Shin, H. K. Seo, A. M. Asiri, M. K. Nazeeruddin. Perovskite solar cells: influence of hole transporting materials on power conversion efficiency. ChemSusChem, 2016, 9: 10-27.

[14] X. W. Xu, C. Q. Ma, Y. H. Cheng, Y. M. Xie, X. P. Yi, B. Gautam, S. M. Chen, H. W. Li, C. S. Lee, F. So, S. W. Tsang. Ultraviolet-ozone surface modification for non-wetting hole transport materials based inverted planar perovskite solar cells with efficiency exceeding 18%. J. Power Sources, 2017, 360: 157-165.

[15] N. Arora, M. I. Dar, A. Hinderhofer, N. Pellet, F. Schreiber, S. M. Zakeeruddin, M. Gratzel. Perovskite solar cells with CuSCN hole extraction layers yield stabilized efficiencies greater than 20%. Science, 2017, 358: 768-771.

[16] C. T. Zuo, L. M. Ding. Solution-processed Cu2O and CuO as hole transport materials for efficient perovskite solar cells. Small, 2015, 11: 5528-5532.

[17] J. B. You, Z. R. Hong, Y. Yang, Q. Chen, M. Cai, T. B. Song, C. C. Chen, S. R. Lu, Y. S. Liu, H. P. Zhou, Y. Yang. Low-temperature solution-processed perovskite solar cells with high efficiency and flexibility. ACS Nano, 2014, 8: 1674-1680.

[18] Q. Wang, C. Bi, J. Huang. Doped hole transport layer for efficiency enhancement in planar heterojunction organolead trihalide perovskite solar cells. Nano Energy, 2015, 15: 275-280.

[19] C. Bi, Q. Wang, Y. Shao, Y. Yuan, Z. Xiao, J. Huang. Non-wetting surface-driven high-aspect-ratio crystalline grain growth for efficient hybrid perovskite solar cells. Nat. Commun., 2015, 6: 7747.

[20] D. Y. Luo, W. Q. Yang, Z. P. Wang, A. Sadhanala, Q. Hu, R. Su, R. Shivanna, G. F. Trindade, J. F. Watts, Z. J. Xu, T. H. Liu, K. Chen, F. J. Ye, P. Wu, L. C. Zhao, J. Wu, Y. G. Tu, Y. F. Zhang, X. Y. Yang, W. Zhang, R. H. Friend, Q. H. Gong, H. J. Snaith, R. Zhu. Enhanced photovoltage for inverted planar heterojunction perovskite solar cells. Science, 2018, 360: 1442-1446.

[21] W. S. Yang, B. W. Park, E. H. Jung, N. J. Jeon, Y. C. Kim, U. L. Dong, S. S. Shin, J. Seo, E. K. Kim, J. H. Noh. Iodide management in formamidinium-lead-halide-based perovskite layers for efficient solar cells. Science, 2017, 356: 1376-1379.

[22] Y. Shao, Y. Yuan, J. Huang. Correlation of energy disorder and open-circuit voltage in hybrid perovskite solar cell. Nat. Energy, 2016, 1: 15001.

[23] J. Cao, B. H. Wu, R. H. Chen, Y. Y. Q. Wu, Y. Hui, B. W. Mao, N. F. Zheng. Efficient, hysteresis-free, and stable perovskite solar cells with ZnO as electron-transport layer: effect of surface passivation. Adv. Mater., 2018, 30: 1705596.

[24] T. Singh, S. Oz, A. Sasinska, R. Frohnhoven, S. Mathur, T. Miyasaka. Sulfate-assisted interfacial engineering for high yield and efficiency of triple cation perovskite solar cells with alkali-doped TiO2 electron-transporting layers. Adv. Funct. Mater., 2018, 28: 1706287.

[25] Y. Reyna, M. Salado, S. Kazim, A. Pérez-Tomas, S. Ahmad, M. Lira-Cantu. Performance and stability of mixed FAPbI3(0.85)MAPbBr3(0.15) halide perovskite solar cells under outdoor conditions and the effect of low light irradiation. Nano Energy, 2016, 30: 570-579.

[26] K. T. Cho, S. Paek, G. Grancini, C. Roldán-Carmona, P. Gao, Y. Lee, M. K. Nazeeruddin. Highly efficient perovskite solar cells with a compositionally engineered perovskite/hole transporting material interface. Energy Environ. Sci., 2017, 10: 621-627.

[27] Y. C. Kim, N. J. Jeon, J. H. Noh, W. S. Yang, J. Seo, J. S. Yun, A. Ho-Baillie, S. J. Huang, M. A. Green, J. Seidel, T. K. Ahn, S. Seok. Beneficial effects of PbI2 incorporated in organo-lead halide perovskite solar cells. Adv. Energy Mater., 2016, 6: 1502104.

[28] T. J. Jacobsson, J.-P. Correa-Baena, E. H. Anaraki, B. Philippe, S. D. Stranks, M. E. F. Bouduban, W. Tress, K. Schenk, J. Teuscher, J.-E. Moser, H. Rensmo, A. Hagfeldt. Unreacted PbI2 as a double-edged sword for enhancing the performance of perovskite solar cells. J. Am. Chem. Soc., 2016, 138: 10331-10343.

[29] V. Ramana, H. Su, Y. Wu, H. Wu, J. Xie, X. Liu, J. Fan, J. Dai, Z. He. Photon-generated carriers excited superoxide species inducing long-term photoluminescence enhancement of MAPbI3 perovskite single crystals. J. Mater. Chem. A, 2017, 5: 12048-12053.

[30] W. Chen, G.-N. Zhang, L. Xu, R. Gu, Z. Xu, H. Wang, Z. He. Low temperature processed, high-performance and stable NiOx based inverted planar perovskite solar cells via a poly(2-ethyl-2-oxazoline) nanodots cathode electron-extraction layer. Mater. Today Energy, 2016, 1: 1-10.

[31] H. Zhang, J. Cheng, F. Lin, H. He, J. Mao, K. S. Wong, A. K. Jen, W. C. Choy. Pinhole-free and surface-nanostructured NiOx film by room-temperature solution process for high-performance flexible perovskite solar cells with good stability and reproducibility. ACS Nano, 2016, 10: 1503-1511.

[32] A. Abrusci, S. D. Stranks, P. Docampo, H. L. Yip, A. K. Jen, H. J. Snaith. High-performance perovskite-polymer hybrid solar cells via electronic coupling with fullerene monolayers. Nano Lett., 2013, 13: 3124-3128.

[33] Q. Dong, Y. Fang, Y. Shao, P. Mulligan, J. Qiu, L. Cao, J. Huang. Electron-hole diffusion lengths > 175 μm in solution-grown CH3NH3PbI3 single crystals. Science, 2015, 347: 967-970.

[34] J. H. Heo, H. J. Han, D. Kim, T. K. Ahn, S. H. Im. Hysteresis-less inverted CH3NH3PbI3 planar perovskite hybrid solar cells with 18.1% power conversion efficiency. Energy Environ. Sci., 2015, 8: 1602-1608.

[35] M. Bag, L. A. Renna, R. Y. Adhikari, S. Karak, F. Liu, P. M. Lahti, T. P. Russell, M. T. Tuominen, D. Venkataraman. Kinetics of ion transport in perovskite active layers and its implications for active layer stability. J. Am. Chem. Soc., 2015, 137: 13130-13137.

[36] J. A. Bartelt, D. Lam, T. M. Burke, S. M. Sweetnam, M. D. McGehee. Charge-carrier mobility requirements for bulk heterojunction solar cells with high fill factor and external quantum efficiency >90%. Adv. Energy Mater., 2015, 5: 1500577.

Yang Li, Chao Liang, Gaopeng Wang, Jielei Li, Shi Chen, Shihe Yang, Guichuan Xing, Hui Pan. Two-step solvent post-treatment on PTAA for highly efficient and stable inverted perovskite solar cells[J]. Photonics Research, 2020, 8(10): 10000A39.

引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!