强激光与粒子束, 2015, 27 (9): 096001, 网络出版: 2015-11-30  

随机填充增殖剂球床内载气流动特性数值模拟

Numerical simulation of purge gas flow characteristics in randomly packed tritium breeder pebble bed
作者单位
1 中国科学技术大学 核科学技术学院, 合肥 230027
2 中国工程物理研究院 核物理与化学研究所, 四川 绵阳 621900
3 中国科学技术大学, 合肥 230027
摘要
固态氚增殖包层是聚变堆及聚变-裂变混合堆产氚包层的重要候选结构之一,其球床通道内载气流动特性将影响氚提取效率。利用离散元方法(DEM)生成随机填充增殖剂球床,通过径向孔隙率分布验证其合理性,计算流体力学(CFD)模拟计算其通道内气体流场特征。模拟得到:球床内吹扫氦气流速随孔隙率波动并随入口流速增大而均匀增大,通道内氦气流向及流速变化显著,Blake-Kozeny方程可良好预测该随机填充球床通道压降。
Abstract
Solid tritium breeder blanket is one of the most important blanket candidates for fusion reactor and fusion-fission hybrid reactor. The purge gas flow characteristics in the channels of pebble bed are important for the effective extraction of bred tritium from the solid breeder materials. A random packed structure of breeder pebbles, generated by Discrete Element Method (DEM), is verified by radial porosity distribution. The flow field parameters of the purge gas in channels are solved by Computational Fluid Dynamics (CFD) solver. The numerical analysis shows the velocity of the purge helium fluctuates with porosity distribution and uniformly increases with increasing inlet velocity, remarkable changes of flow direction and velocity occur in the channels. Blake-Kozeny equation is well applied to predicting the pressure drop in this random packed pebble bed.
参考文献

[1] 李正宏, 黄洪文, 王真, 等. Z箍缩驱动聚变-裂变混合能源堆总体概念研究[J]. 强激光与粒子束, 2014, 26: 100202.(Li Zhenghong, Huang Hongwen, Wang Zhen, et al. Conceptual design of Z-pinch driven fusion-fission hybrid power reactor. High Power Laser and Particle Beams, 2014, 26: 100202)

[2] Ihli T, Basu T K, Giancarli L M, et al. Review of blanket designs for advanced fusion reactors[J]. Fusion Engineering and Design, 2008, 83: 912-919.

[3] Ali A, Frederik A, Lorenzo V B, et al. Experimental study and analysis of the purge gas pressure drop across the pebble beds for the fusion HCPB blanket[J]. Fusion Engineering and Design, 2013, 88(4): 243-247.

[4] 汪卫华,程德胜,冯开明,等. 中国HCCB-TBM氚增殖球床热工水力学特性数值模拟[J]. 核聚变与等离子体物理, 2014, 34(3): 200-206.

    Wang Weihua, Cheng Desheng, Feng Kaiming, et al. Numerical simulation on thermal hydraulics characteristics of breeder pebble bed for China HCCB-TBM. Nuclear Fusion and Plasma Physics, 2014, 34(3): 200-206

[5] 宋娟,郭海兵,黄洪文. 增殖剂球床载气流动特性[J]. 强激光与粒子束, 2015, 27: 016006.

    Song Juan, Guo Haibing, Huang Hongwen. Pore flow analysis of sweep gas in tritium breeder pebble bed. High Power Laser and Particle Beams, 2015, 27: 016006

[6] Cundall P A, Starck O D L. A discrete numerical model for granular assemblies[J]. Geotechnique, 1979, 29: 47-65.

[7] Eppinger T, Seidler K, Kraume M. DEM-CFD simulations of fixed bed reactor with small tube to particle diameter ratios[J]. Chemical Engineering Journal, 2011, 166: 324-331.

[8] Bai H, Theuerkauf J, Gillis P A, et al. A coupled DEM and CFD simulation of flow field and pressure drop in fixed bed reactor with randomly packed catalyst particles[J]. Ind Eng Chem Res, 2009, 48: 4060-4074.

[9] Atmakidis T, Kenig E Y. CFD-based analysis of the wall effect on the pressure drop in packed beds with moderate tube/particle diameter ratios in the laminar flow regime[J]. Chem Eng J, 2009, 155: 404-410.

[10] Guardo A, Coussirat M, Angels L M, et al. CFD flow and heat transfer in nonregular packings for fixed bed equipment design[J]. Ind Eng Chem Res, 2004, 43: 7049-7056.

[11] De Klerk A. Voidage variation in packed beds at small column to particle diameter ratios[J]. AIChE Journal, 2003, 49(8): 2022-2029.

[12] Ergun S. Fluid flow through packed columns[J]. Chemical Engineering Progress, 1952, 48: 89-94.

张浩, 李正宏, 郭海兵, 黄洪文, 宋娟. 随机填充增殖剂球床内载气流动特性数值模拟[J]. 强激光与粒子束, 2015, 27(9): 096001. Zhang Hao, Li Zhenghong, Guo haibing, Huang Hongwen, Song Juan. Numerical simulation of purge gas flow characteristics in randomly packed tritium breeder pebble bed[J]. High Power Laser and Particle Beams, 2015, 27(9): 096001.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!