中国激光, 2015, 42 (8): 0805002, 网络出版: 2022-09-24   

一种基于双荧光比值法的光纤温度传感器

A Fiber-Optic Temperature Sensor Based on Dual Fluorescence by Using FIR Method
作者单位
1 中国科学院西安光学精密机械研究所, 陕西 西安 710119
2 中国科学院大学, 北京 100049
3 西北大学物理学院, 陕西 西安 710069
摘要
提出了一种基于荧光强度比值法的光纤温度传感器并通过实验来具体探究其性能。实验中采用塑料光纤来传导激励光,以及接收罗丹明B 和罗丹明110两种荧光物质发出的荧光。由于罗丹明B 对温度敏感而罗丹明110对温度不敏感,因此可通过计算两种物质的荧光强度比来标定温度。为了得到理想的测温性能,进行了大量实验以确定出可用于比值法的最佳荧光光谱范围。该传感器在25~60 ℃的范围内能稳定工作,可获得0.38 ℃的最小均方误差及0.0134 /℃的灵敏度。此外,通过实验证明该传感器对曲率半径大于9 mm 的光纤弯曲不敏感;在现场温度测量方面有较大的应用潜力。
Abstract
A fiber-optic temperature sensor based on fluorescence intensity ratiometric (FIR) method is proposed and investigated experimentally. Plastic optical fibers are employed for transmitting the excitation light and collecting the Rhodamine B (RHB) and Rhodamine110 (RH110) fluorescence signals. Given that the fluorescence intensity of RHB is temperature-dependent while that of RH110 is temperature-independent, the temperature can be measured by calculating the fluorescence intensity ratio of these two dyes. To achieve a desired performance, the optimal integration ranges of fluorescence intensities of the two dyes are identified via considerable experimental tests. Indeed, a precise measurement is achieved in experiments. The feasible range of temperatures is from 25 ℃ to 60 ℃ ; a minimum rms temperature error of 0.38 ℃ and a sensitivity of 0.0134 /℃ are achieved. Further, the proposed sensor is proved to be insensitive to fiber bending for bend radii exceeding 9 mm. Thus, the sensor can be used for in situ temperature monitoring.
参考文献

[1] Lang Yue, Tong Shoufeng. Design of demodulation system of fiber Bragg grating temperature sensor based on FPGA[J]. Laser & Optoelectronics Progress, 2013, 50(9): 090601.

[2] Lü Weiwei, Xu Feng, Yu Benli. All- fiber Mach- Zehnder temperature sensor based on inter- modal interference[J]. Laser & Optoelectronics Progress, 2014, 51(5): 050605.

[3] Huang Wenfa, Wang Xiaochao, Wang Jiangfeng, et al.. Temperature characteristic of stimulated brillouin scattering in single-mode fiber[J]. Chinese J Lasers, 2013, 40(4): 0405001.

[4] Pan Hongliang, Dong Huijuan, Zhang Guangyu, et al.. Research on fiber grating pressure/temperature monitoring device of distinguish range and double sensitivity[J]. Chinese J Lasers, 2013, 40(2): 0205005.

[5] A Minardo, R Bernini, L Zeni. Distributed temperature sensing in polymer optical fiber by BOFDA[J]. Photonics Technology Letters, IEEE, 2014, 26(4): 387-390.

[6] Y Mizuno, K Nakamura. Potential of Brillouin scattering in polymer optical fiber for strain-insensitive high-accuracy temperature sensing[J]. Opt Lett, 2010, 35(23): 3985-3987.

[7] Y Luo, W Wu, T Wang, et al.. Analysis of multimode BDK doped POF gratings for temperature sensing[J]. Opt Commun, 2012, 285(21): 4353-4358.

[8] H A Rahman, S W Harun, N Saidin, et al.. Fiber optic displacement sensor for temperature measurement[J]. Sensors Journal, IEEE, 2012, 12(5): 1361-1364.

[9] X Lin, L Ren, Y Xu, et al.. Low-cost multipoint liquid-level sensor with plastic optical fiber[J]. Photonics Technology Letters, IEEE, 2014, 26(16): 1613-1616.

[10] S Tao, A Jayaprakash. A fiber optic temperature sensor with an epoxy-glue membrane as a temperature indicator[J]. Sensors and Actuators B: Chemical, 2006, 119(2): 615-620.

[11] H D Duong, J I Rhee. Exploitation of thermo- effect of rhodamine B entrapped in sol- gel matrix and silica gel for temperature detection[J]. Sensors and Actuators B: Chemical, 2007, 124(1): 18-23.

[12] Z Zhang, K T V Grattan, A W Palmer. Fiber-optic high-temperature sensor based on the fluorescence lifetime of alexandrite[J]. Review of scientific Instruments, 1992, 63(8): 3869-3873.

[13] H Aizawa, T Katsumata, S Komuro, et al.. Fluorescence thermometer based on the photoluminescence intensity ratio in Tb doped phosphor materials[J]. Sensors and Actuators A: Physical, 2006, 126(1): 78-82.

[14] J Castrellon-Uribe. Experimental results of the performance of a laser fiber as a remote sensor of temperature[J]. Optics and Lasers in Engineering, 2005, 43(6): 633-644.

[15] D Li, Y Wang, X Zhang, et al.. Optical temperature sensor through infrared excited blue upconversion emission in Tm3 +/Yb3 + codoped Y2O3[J]. Opt Commun, 2012, 285(7): 1925-1928.

[16] J Castrellon, G Paez, M Strojnik. Radiometric analysis of a fiber optic temperature sensor[J]. Opt Eng, 2002, 41(6): 1255-1261.

[17] L Liu, Y Wang, X Zhang, et al.. Optical thermometry through green and red upconversion emissions in Er3 +/Yb3 +/Li + : ZrO2 nanocrystals[J]. Opt Commun, 2011, 284(7): 1876-1879.

[18] H T Lam, Y Kostov, L Tolosa, et al.. A high-resolution non-contact fluorescence-based temperature sensor for neonatal care[J]. Measurement Science and Technology, 2012, 23(3): 035104.

[19] P Chamarthy, S V Garimella, S T Wereley. Measurement of the temperature non- uniformity in a microchannel heat sink using microscale laser-induced fluorescence[J]. International Journal of Heat and Mass Transfer, 2010, 53(15): 3275-3283.

[20] J Sakakibara, R J Adrian. Whole field measurement of temperature in water using two- color laser induced fluorescence[J]. Experiments in Fluids, 1999, 26(1-2): 7-15.

[21] X Lin, L Ren, J Liang. Nondestructive scheme for measuring the attenuation coefficient of polymer optical fiber[J]. Opt Lett, 2013, 38(4): 528-530.

[22] G Durana, J Zubia, J Arrue, et al.. Dependence of bending losses on cladding thickness in plastic optical fibers[J]. Appl Opt, 2003, 42(6): 997-1002.

杜新超, 周利斌, 贺正权, 刘丰, 林霄, 胡宝文, 郭小艺, 罗宝科, 任立勇, 李育林. 一种基于双荧光比值法的光纤温度传感器[J]. 中国激光, 2015, 42(8): 0805002. Du Xinchao, Zhou Libin, He Zhengquan, Liu Feng, Lin Xiao, Hu Baowen, Guo Xiaoyi, Luo Baoke, Ren Liyong, Li Yulin. A Fiber-Optic Temperature Sensor Based on Dual Fluorescence by Using FIR Method[J]. Chinese Journal of Lasers, 2015, 42(8): 0805002.

本文已被 2 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!