光学技术, 2017, 43 (2): 97, 网络出版: 2017-04-10  

J-C模型和原子-腔光力学系统中的纠缠交换

Entanglement swapping in Jaynes-Cummings model and atom-cavity-optomechanical system
作者单位
南昌大学电子信息工程系, 江西 南昌 330031
摘要
基于Jaynes-Cummings模型和原子-腔光力学系统, 研究了该系统中原子与机械模之间的纠缠交换机制, 讨论了两个原子的相干角和腔场与机械模之间的耦合系数对原子与机械模之间纠缠的影响。一个原子与机械模之间的最大纠缠随着该原子相干角的增大而减小, 另一个原子与机械模之间的纠缠存在突然产生和突然死亡现象, 并且最大纠缠随该原子相干角的增大而增大。根据这一结果可以制备原子与机械模之间的最大纠缠态, 这为纠缠调控提供了一种新的方式。
Abstract
Using the relevant theoretical knowledge of quantum entanglement, the entanglement swapping between atoms and mechanical mode in the Jaynes-Cummings model and atom-cavity-optomechanical system is studied. The influence of the coherent angles of two atoms and the coupling coefficient between the cavity field and the mechanical mode on the entanglement between atoms and mechanical mode is discussed. It is shown that the maximum of the entanglement between atom 1 and the mechanical mode decreases with the increase of the first atomic coherent angle. There is the phenomenon of sudden birth of entanglement between atom 2 and the mechanical mode, and the maximum of the entanglement increases with the increase of the second atomic coherent angle. The maximally entangled state between atoms and the mechanical mode is prepared. The proposal may provide a new way to control and manipulate the entanglement in theory.
参考文献

[1] FICEK Z,et al. Dark periods and revivals of entanglement in a two-qubit system[J]. Phys. Rev. A, 2006, 74(2): 024304-024307.

[2] ABDEL-KHALEK S,et al. Effect of the time-dependent coupling on a superconducting qubit-field system under decoherence: Entanglement and Wehrl entropy[J]. Ann. of Phys., 2015, 361(10): 247-258.

[3] LIU Y,et al. Quantum correlations of two qubits interacting with a macroscopic medium[J]. Quant. Inf. Proc., 2015, 14(4): 1343-1360.

[4] HU J W,et al. Entanglement dynamics for uniformly accelerated two-level atoms[J]. Phys. Rev. A, 2015, 91(1): 012327.

[5] FICEK Z,et al. Delayed sudden birth of entanglement[J]. Phys. Rev. A, 2008, 77(5): 054301.

[6] DU M D,et al. Sudden birth of entanglement between two atoms in a double JC model[J]. Chin. Opt. Lett., 2009, 7(5): 050443.

[7] GRBLACHER S, et al. Observation of strong coupling between a micromechanical resonator and an optical cavity field[J]. Nature, 2009, 460(7256): 724-727.

[8] WILSON-RAE I, et al. Theory of ground state cooling of a mechanical oscillator using dynamical backaction[J]. Phys. Rev. Lett., 2007, 99(9): 093901.

[9] GENES C, et al. Ground-state cooling of a micromechanical oscillator: comparing cold damping and cavity-assisted cooling schemes[J]. Phys. Rev. A, 2008, 77(3): 033804.

[10] AGARWAL G S,et al. Electromagnetically induced transparency in mechanical effects of light[J]. Phys. Rev. A, 2010, 81(4): 041803.

[11] CHEN B,et al. Slow light in a cavity optomechanical system with a Bose-Einstein condensate[J]. Phys. Rev. A, 2011, 83(5): 055803.

[12] LIU N,et al. Entanglement in a tripartite cavity-optomechanical system[J]. Int. J. Theor. Phys., 2013, 52(3): 706-715.

[13] VACANTI G, et al. Optomechanical to mechanical entanglement transformation[J]. New J. Phys., 2008, 10(9): 095014.

[14] 左战春,等. Tavis-Cummings模型中三体纠缠态纠缠量的演化特性[J]. 物理学报, 2003, 52(11): 2687-2693.

    ZUO Z C, et al. The evolution property of three-body entanglement measure in Tavis-Cummings model[J]. Acta Phys. Sin., 2003, 52(11): 2687-2693.

[15] ZHANG J S,et al. Control of the entanglement of a two-level atom in a dissipative cavity via a classical field[J]. Opt. Commun., 2009, 282(13): 2543-2546.

[16] LIAO Q H, et al. Entanglement swapping in two independent Jaynes-Cumming models[J]. Eur. Phys. J. D, 2011, 61(2): 475-479.

[17] DE ALMEIDA N G. One-cavity scheme enabling to implement delayed choice for entanglement swapping in cavity QED[J]. J. Phys. B: At. Mol. Opt. Phys., 2015, 48(11): 115508.

[18] PAN J W, et al. Experimental entanglement swapping: entangling photons that never interacted[J]. Phys. Rev. Lett., 1998, 80(18): 3891-3894.

[19] FENG X L, et al. Entangling distant atoms by interference of polarized photons[J]. Phys. Rev. Lett., 2003, 90(21): 217902–1–4.

[20] LIAO Q H, et al. Control of the entanglement between two atoms trapped in spatially separated cavities connected by an optical fiber[J]. Int. J. Theor. Phys., 2011, 50(8): 2622-2629.

[21] YU T,et al. Evolution from entanglement to decoherence of bipartite mixed “X” states[J]. Quantum Inf. Comput., 2007, 7(5-6): 459-468.

[22] BOSE S,et al. Scheme to probe the decoherence of a macroscopic object[J]. Phys. Rev. A, 1999, 59(5): 3204.

[23] HOOD C J, et al. Real-time cavity QED with single atoms[J]. Phys. Rev. Lett., 1998, 80(19): 4157.

廖庆洪, 张旗, 刘晔. J-C模型和原子-腔光力学系统中的纠缠交换[J]. 光学技术, 2017, 43(2): 97. LIAO Qinghong, ZHANG Qi, LIU Ye. Entanglement swapping in Jaynes-Cummings model and atom-cavity-optomechanical system[J]. Optical Technique, 2017, 43(2): 97.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!