强激光与粒子束, 2018, 30 (3): 033001, 网络出版: 2018-05-29  

新型二次电子倍增阴极构型设计与动力学过程

Configuration design and dynamic process study of novel multipacting cathode
作者单位
1 西南交通大学 物理科学与技术学院, 成都 610031
2 北京应用物理与计算数学研究所, 北京 100094
摘要
提出了一种可由脉冲功率驱动的新型二次电子倍增阴极构型,并对其进行了动力学过程的初步理论研究。首先,针对该二次电子倍增阴极,建立了动力学模型,获得了二次电子的位移和速度方程,讨论了电子初始出射速度对其轨迹、渡越时间和碰撞能量的影响,理论给出了渡越时间和碰撞能量的近似解析表达式。其次,通过动力学方程与Vaughan二次电子产额经验公式的耦合求解,获得了该二次电子倍增阴极的工作区间,并对其进行了细致讨论。结果表明:该新型二次电子倍增阴极二极管概念上是可行的,在涂敷高二次电子产额系数材料的圆柱形介质上施加合适的轴向和径向静电场(MV/m量级)以及轴向静磁场(T量级),可以达到电子沿阴极表面螺旋行进过程中实现二次电子倍增并最终获得电流沿轴向放大的设计目标。另外,讨论了正电荷沉积引发的二次电子倍增饱和现象,并对阴极发射电流密度进行了理论粗估,结果表明:阴极发射电流密度可达kA/cm2水平,具备强流发射特性;增加外加径向场强幅值可有效提升阴极发射电流密度。
Abstract
In this paper, the configuration design of a novel multipacting cathode driven by pulsed power source is put forward and its dynamic process is theoretically investigated in detail. Firstly, the dynamic model is established for this novel multipacting cathode, the displacement and velocity expressions are obtained by solving the dynamic equation of secondary electrons. The influences of electron with different initial energy emitted from each direction on electron trajectory, velocity, and impact energy are discussed. The approximate expressions of electron transit time and impact energy are obtained and discussed theoretically. Secondly, to find the multipacting cathode working range, the multipacting susceptibility diagram is obtained and discussed in detail by solving electron dynamic equation coupling Vaughan’s empirical formula (secondary electron yield model). Theoretical results demonstrate that the conception of the novel multipacting cathode is feasible. By applying an appropriate electric field (about MV/m) in axial and radial directions and a proper magnetic field (T) in axial direction on a cylindrical dielectric surface coated by high secondary emission yield coefficient material, the electrons move with spiral trajectories along axial direction. Electron number could be increased effectively by each impact with multipacting interaction. This phenomenon could achieve electron current amplification until multipacting comes to saturation. Finally, the deposit phenomenon of positive charges and multipacting saturation are analyzed and discussed. The roughly theoretical estimation indicates that the novel multipacting cathode has the performance of high emission current density, and the emission current density can run up to the level of kA/cm2. Enhancing the magnitude of applied electrostatic field in radial direction can effectively improve the emission current density.
参考文献

[1] Farnsworth P T. Television by electron image scanning[J]. J Franklin Inst, 1934, 218(4): 411-444.

[2] Vaughan J R M. A new formula for secondary emission yield[J]. IEEE Trans Electron Devices, 1989, 36(9): 1963-1967.

[3] Furman M A, Pivi M T F. Probabilistic model for the simulation of secondary electron emission[J]. Phys Rev Special Topics Accel Beams, 2002, 5: 124404.

[4] Vaughan J R M. Multipactor[J]. IEEE Trans Electron Devices, 1988, 35(7): 1172-1180.

[5] Kishek R A, Lau Y Y, et al. Multipactor discharge on metals and dielectrics: Historical review and recent theories[J]. Phys Plasmas, 1998, 5(5): 2120-2126.

[6] Kim H C, Verboncoeur J P. Time-dependent physics of a single-surface multipactor discharge[J]. Phys Plasmas, 2005, 12: 123504.

[7] Foster J, Krompholz H, Neuber A. Statistical analysis of high power microwave surface flashover delay times in nitrogen with metallic field enhancements[J]. Phys Plasmas, 2011, 18: 113505.

[8] Perkins M P, Houck T L, Javedani J B, et al, Progress on simulating the initiation of vacuum insulator flashover[C]//Proc 17th IEEE Int Pulsed Power Conf. 2009: 441-446.

[9] Neuber A, Butcher M, Hatfield L L, et al. Electric current in dc surface flashover in vacuum[J]. J Appl Phy, 1999, 85(6): 3084-3091.

[10] Liu Y S, Zhang G J, Zhao W B, et al. Analysis on surface charging of insulator prior to flashover in vacuum[J]. Applied Surface Science, 2004, 230(1): 12-17.

[11] 程国新, 程新兵, 刘列, 等. 刻槽绝缘子真空表面闪络特性分析[J]. 强激光与粒子束, 2012, 24(4): 801-805. (Cheng Guoxin, Cheng Xinbing, Liu Lie, et al. Vacuum surface flashover of grooved dielectrics. High Power Laser and Particle Beams, 2012, 24(4): 801-805)

[12] Cai L B, Wang J G, Zhang D H, et al. Self-consistent simulation of the initiation of the flashover discharge on vacuum insulator surface[J]. Phys Plasmas, 2012, 19: 073516.

[13] 王勐, 丁伯南, 谢卫平. 多层长渡越时间轴向绝缘堆的闪络概率分析[J]. 强激光与粒子束, 2004, 16(7): 934-938. (Wang Meng, Ding Bonan, Xie Weiping. Flashover probability analysis of vacuum insulator stack with many stages and large transit time. High Power Laser and Particle Beams, 2004, 16(7): 934-938)

[14] Barker R J, Schamiloglu E. 高功率微波源与技术[M]. 北京: 清华大学出版社, 2005. (Barker R J, Schamiloglu E. High-power microwaves sources and technologies. Beijing: Tsinghua University Press, 2005)

[15] Mako F M. Electron gun for producing incident and secondary electrons: 7285915[P]. 2007-10-23.

[16] 翟纪元, 唐传祥, 郑曙昕. 微脉冲电子枪动力学实验研究[J]. 高能物理与核物理, 2006, 30(s1): 99-101. (Zhai Jiyuan, Tang Chuanxiang, Zheng Shuxin. Experimental study on the beam dynamics of the micro-pulse electron gun. High Energy Physics and Nuclear Physics, 2006, 30(s1): 99-101)

[17] 孙红兵, 裴元吉, 谢爱根, 等. 二次发射微波电子枪的倍增特性[J]. 强激光与粒子束, 2004, 16(11): 1477-1480. (Sun Hongbing, Pei Yuanji, Xie Aigen, et al. Multiplication effect of the secondary emission microwave electron gun. High Power Laser and Particle Beams, 2004, 16(11): 1477-1480)

[18] 杨兴繁, 许州, 刘锡三, 等. 微脉冲电子枪理论分析与实验设计[R]. 中国核科技报告, 2002: 143-152. (Yang Xingfan, Xu Zhou, Liu Xisan, et al. Analysis and experimental design of micro-pulse gun. China Nuclear Science and Technology Report, 2002: 143-152)

董烨, 刘庆想, 李相强, 周海京, 董志伟. 新型二次电子倍增阴极构型设计与动力学过程[J]. 强激光与粒子束, 2018, 30(3): 033001. Dong Ye, Liu Qingxiang, Li Xiangqiang, Zhou Haijing, Dong Zhiwei. Configuration design and dynamic process study of novel multipacting cathode[J]. High Power Laser and Particle Beams, 2018, 30(3): 033001.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!