Photonics Research, 2019, 7 (9): 09000967, Published Online: Aug. 7, 2019  

Simulating robust far-field coupling to traveling waves in large three-dimensional nanostructured high-Q microresonators Download: 592次

Author Affiliations
1 State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876, China
2 College of Optical Sciences, University of Arizona, Tucson, Arizona 85721, USA
3 Department of Biomedical Engineering, University of Arizona, Tucson, Arizona 85721, USA
4 e-mail: judy@optics.arizona.edu
5 e-mail: euanmc@optics.arizona.edu
Copy Citation Text

Lei Chen, Cheng Li, Yu-Min Liu, Judith Su, Euan McLeod. Simulating robust far-field coupling to traveling waves in large three-dimensional nanostructured high-Q microresonators[J]. Photonics Research, 2019, 7(9): 09000967.

References

[1] E. McLeod, Q. Wei, O. Aydogan. Democratization of nanoscale imaging and sensing tools using photonics. Anal. Chem., 2015, 87: 6434-6445.

[2] J. Su, A. F. Goldberg, B. M. Stoltz. Label-free detection of single nanoparticles and biological molecules using microtoroid optical resonators. Light Sci. Appl., 2016, 5: e16001.

[3] J. C. Knight, G. Cheung, F. Jacques, T. A. Birks. Phase-matched excitation of whispering-gallery-mode resonances by a fiber taper. Opt. Lett., 1997, 22: 1129-1131.

[4] F. Vollmer, S. Arnold, D. Keng. Single virus detection from the reactive shift of a whispering-gallery mode. Proc. Natl. Acad. Sci. USA, 2008, 105: 20701-20704.

[5] F. Vollmer, S. Arnold. Whispering-gallery-mode biosensing: label-free detection down to single molecules. Nat. Methods, 2008, 5: 591-596.

[6] S. H. Huang, X. Jiang, B. Peng, C. Janisch, A. Cocking, Ş. K. Özdemir, Z. Liu, L. Yang. Surface-enhanced Raman scattering on dielectric microspheres with whispering gallery mode resonance. Photon. Res., 2018, 6: 346-356.

[7] J. Su. Label-free biological and chemical sensing using whispering gallery mode optical resonators: past, present, and future. Sensors, 2017, 17: 540.

[8] X. Jiang, L. Shao, S. X. Zhang, X. Yi, J. Wiersig, L. Wang, Q. Gong, M. Lončar, L. Yang, Y. F. Xiao. Chaos-assisted broadband momentum transformation in optical microresonators. Science, 2017, 358: 344-347.

[9] L. Shao, L. Wang, W. Xiong, X.-F. Jiang, Q.-F. Yang, Y.-F. Xiao. Ultrahigh-Q, largely deformed microcavities coupled by a free-space laser beam. Appl. Phys. Lett., 2013, 103: 121102.

[10] X.-F. Jiang, C.-L. Zou, L. Wang, Q. Gong, Y.-F. Xiao. Whispering-gallery microcavities with unidirectional laser emission. Laser Photon. Rev., 2016, 10: 40-61.

[11] X.-F. Jiang, Y.-F. Xiao, C.-L. Zou, L. He, C.-H. Dong, B.-B. Li, Y. Li, F.-W. Sun, L. Yang, Q. Gong. Highly unidirectional emission and ultralow-threshold lasing from on-chip ultrahigh-Q microcavities. Adv. Mater., 2012, 24: OP260-OP264.

[12] Z.-P. Liu, X.-F. Jiang, Y. Li, Y.-F. Xiao, L. Wang, J.-L. Ren, S.-J. Zhang, H. Yang, Q. Gong. High-Q asymmetric polymer microcavities directly fabricated by two-photon polymerization. Appl. Phys. Lett., 2013, 102: 221108.

[13] X.-F. Jiang, Y.-F. Xiao, Q.-F. Yang, L. Shao, W. R. Clements, Q. Gong. Free-space coupled, ultralow-threshold Raman lasing from a silica microcavity. Appl. Phys. Lett., 2013, 103: 101102.

[14] J. Zhu, Ş. K. Özdemir, H. Yilmaz, B. Peng, M. Dong, M. Tomes, T. Carmon, L. Yang. Interfacing whispering-gallery microresonators and free space light with cavity enhanced Rayleigh scattering. Sci. Rep., 2014, 4: 6396.

[15] Y.-C. Liu, Y.-F. Xiao, X.-F. Jiang, B.-B. Li, Y. Li, Q. Gong. Cavity-QED treatment of scattering-induced free-space excitation and collection in high-Q whispering-gallery microcavities. Phys. Rev. A, 2012, 85: 013843.

[16] F. Shu, X. Jiang, G. Zhao, L. Yang. A scatterer-assisted whispering-gallery-mode microprobe. Nanophotonics, 2018, 7: 1455-1460.

[17] F. Gu, Z. Li, Y. Zhu, H. Zeng. Free-space coupling of nanoantennas and whispering-gallery microcavities with narrowed linewidth and enhanced sensitivity. Laser Photon. Rev., 2015, 9: 682-688.

[18] Y. Zhang, T. Zhou, B. Han, A. Zhang, Y. Zhao. Optical bio-chemical sensors based on whispering gallery mode resonators. Nanoscale, 2018, 10: 13832-13856.

[19] C. Li, L. Chen, E. McLeod, J. Su. Dark mode plasmonic optical microcavity biochemical sensor. Photon. Res., 2019, 7: 939-947.

[20] J. Su. Label-free single exosome detection using frequency-locked microtoroid optical resonators. ACS Photon., 2015, 2: 1241-1245.

[21] S. I. Shopova, I. M. White, Y. Sun, H. Zhu, X. Fan, G. Frye-Mason, A. Thompson, S. Ja. On-column micro gas chromatography detection with capillary-based optical ring resonators. Anal. Chem., 2008, 80: 2232-2238.

[22] A. Kaplan, M. Tomes, T. Carmon, M. Kozlov, O. Cohen, G. Bartal, H. G. Schwefel. Finite element simulation of a perturbed axial-symmetric whispering-gallery mode and its use for intensity enhancement with a nanoparticle coupled to a microtoroid. Opt. Express, 2013, 21: 14169-14180.

[23] M. D. Baaske, M. R. Foreman, F. Vollmer. Single-molecule nucleic acid interactions monitored on a label-free microcavity biosensor platform. Nat. Nanotechnol., 2014, 9: 933-939.

[24] M. A. C. Shirazi, W. Yu, S. Vincent, T. Lu. Cylindrical beam propagation modelling of perturbed whispering-gallery mode microcavities. Opt. Express, 2013, 21: 30243-30254.

[25] Optical ring resonator notch filter,” .

[26] M. Oxborrow. Traceable 2-D finite-element simulation of the whispering-gallery modes of axisymmetric electromagnetic resonators. IEEE Trans. Microwave Theory Tech., 2007, 55: 1209-1218.

[27] J. Zhu, S. K. Ozdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen, L. Yang. On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator. Nat. Photonics, 2010, 4: 46-49.

[28] D. S. Weiss, V. Sandoghdar, J. Hare, V. Lefevre-Seguin, J.-M. Raimond, S. Haroche. Splitting of high-Q Mie modes induced by light backscattering in silica microspheres. Opt. Lett., 1995, 20: 1835-1837.

[29] Y. Xu, S.-J. Tang, X.-C. Yu, Y.-L. Chen, D. Yang, Q. Gong, Y.-F. Xiao. Mode splitting induced by an arbitrarily shaped Rayleigh scatterer in a whispering-gallery microcavity. Phys. Rev. A, 2018, 97: 063828.

[30] W. Chen, H. Xiao, Z. Liu, X. Han, M. Liao, T. Zhao, Y. Tian. Experimental realization of mode-splitting resonance using microring resonator with a feedback coupled waveguide. Appl. Phys. Express, 2018, 11: 092201.

[31] L. Shao, X.-F. Jiang, X.-C. Yu, B.-B. Li, W. R. Clements, F. Vollmer, W. Wang, Y.-F. Xiao, Q. Gong. Detection of single nanoparticles and lentiviruses using microcavity resonance broadening. Adv. Mater., 2013, 25: 5616-5620.

[32] Y. Zhou, D. Zhu, X. Yu, W. Ding, F. Luan. Fano resonances in metallic grating coupled whispering gallery mode resonator. Appl. Phys. Lett., 2013, 103: 151108.

[33] M. F. Limonov, M. V. Rybin, A. N. Poddubny, Y. S. Kivshar. Fano resonances in photonics. Nat. Photonics, 2017, 11: 543-554.

[34] S. Fan, W. Suh, J. D. Joannopoulos. Temporal coupled-mode theory for the Fano resonance in optical resonators. J. Opt. Soc. Am. A, 2003, 20: 569-572.

[35] F. Ruesink, H. M. Doeleman, R. Hendrikx, A. F. Koenderink, E. Verhagen. Perturbing open cavities: anomalous resonance frequency shifts in a hybrid cavity-nanoantenna system. Phys. Rev. Lett., 2015, 115: 203904.

[36] F. Ruesink, H. M. Doeleman, E. Verhagen, A. F. Koenderink. Controlling nanoantenna polarizability through backaction via a single cavity mode. Phys. Rev. Lett., 2018, 120: 206101.

[37] C. M. Soukoulis, M. Wegener. Past achievements and future challenges in the development of three-dimensional photonic metamaterials. Nat. Photonics, 2011, 5: 523-530.

[38] S. H. Liu, M. Y. Han. Synthesis, functionalization, and bioconjugation of monodisperse, silica-coated gold nanoparticles: robust bioprobes. Adv. Funct. Mater., 2005, 15: 961-967.

[39] HeebnerJ.GroverR.IbrahimT.IbrahimT. A., Optical Microresonators: Theory, Fabrication, and Applications (Springer, 2008), p. 138.

[40] R. Halir, P. J. Bock, P. Cheben, A. Ortega‐Moñux, C. Alonso‐Ramos, J. H. Schmid, J. Lapointe, D.-X. Xu, J. G. Wangüemert‐Pérez, Í. Molina‐Fernández, S. Janz. Waveguide sub-wavelength structures: a review of principles and applications. Laser Photon. Rev., 2015, 9: 25-49.

[41] J. E. Melzer, E. McLeod. Fundamental limits of optical tweezer nanoparticle manipulation speeds. ACS Nano, 2018, 12: 2440-2447.

[42] A. Gopinath, E. Miyazono, A. Faraon, P. W. K. Rothemund. Engineering and mapping nanocavity emission via precision placement of DNA origami. Nature, 2016, 535: 401-405.

[43] Z. Chen, Y. Zhou, J.-T. Shen. Dissipation-induced photonic-correlation transition in waveguide-QED systems. Phys. Rev. A, 2017, 96: 053805.

[44] Z. Chen, Y. Zhou, J.-T. Shen. Photon antibunching and bunching in a ring-resonator waveguide quantum electrodynamics system. Opt. Lett., 2016, 41: 3313-3316.

[45] P. B. Johnson, R.-W. Christy. Optical constants of the noble metals. Phys. Rev. B, 1972, 6: 4370-4379.

[46] MizuyamaY., “How to use the beam envelopes method for wave optics simulations,” .

[47] R. A. Waldron. Perturbation theory of resonant cavities. Proc. IEEE C, 1960, 107: 272-274.

[48] S. Arnold, M. Khoshsima, I. Teraoka, S. Holler, F. Vollmer. Shift of whispering-gallery modes in microspheres by protein adsorption. Opt. Lett., 2003, 28: 272-274.

[49] D. P. Sprünken, H. Omi, K. Furukawa, H. Nakashima, I. Sychugov, Y. Kobayashi, K. Torimitsu. Influence of the local environment on determining aspect-ratio distributions of gold nanorods in solution using Gans theory. J. Phys. Chem. C, 2007, 111: 14299-14306.

[50] S. W. Prescott, P. Mulvaney. Gold nanorod extinction spectra. J. Appl. Phys., 2006, 99: 123504.

Lei Chen, Cheng Li, Yu-Min Liu, Judith Su, Euan McLeod. Simulating robust far-field coupling to traveling waves in large three-dimensional nanostructured high-Q microresonators[J]. Photonics Research, 2019, 7(9): 09000967.

引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!