光子学报, 2019, 48 (8): 0810001, 网络出版: 2019-11-28   

基于几何约束的自适应相位解包裹算法

Adaptive Phase Unwrapping Method Based on Geometric Constraint
作者单位
1 浙江大学 现代光学仪器国家重点实验室 国家光学仪器工程技术研究中心, 杭州 310027
2 浙江大学台州研究院, 浙江 台州 318000
摘要
提出一种通过相机和投影仪的空间几何约束来展开相位包裹的方法, 只需要对结构光投影测量系统进行标定, 不需要进行传统的时间或空间相位展开.通过投影单周期条纹得到物体的大致高度信息以确定虚拟深度平面, 在虚拟平面z0min处, 根据结构光系统的标定参数创建最小绝对相位图, 物体的包裹相位逐像素与进行比较, 即确定条纹级数, 实现相位解包裹.该方法具有良好的鲁棒性, 对硬件要求低, 采集图像少并且不需要额外的物体来获得z0min, 能够实现自适应动态测量.实验结果表明, 在同等条件下, 与传统时间相位展开方法相比, 该方法的相对误差降低了14.33%, 同时简化了测量方法, 能够有效实现物体的三维形貌测量.
Abstract
A method of unwrapping phase by the spatial geometric constraints of the camera and projector is proposed. This method only needs to calibrate the structured light measurement system without conventional temporal or spatial phase unwrapping. The approximate height information of the object is obtained by projecting one-period fringes to determine virtual depth plane, and at the virtual plane z0min, the minimum absolute phase map is created according to the calibration parameters of the structured light system. And then the unwrapped phase of the object can be unwrapped pixel by pixel with reference to the minimum absolute phase map, by determining the number of fringe order. The proposed method has advantages of good robustness and low requirement for hardware, and it does not require any additional image acquisition and additional objects to obtain z0min, which can realize adaptive dynamic measurement. The experimental results show that under the same conditions, compared with the conventional temporal phase unwrapping method, the relative error of the proposed method is reduced by 14.33%, and the measurement method is simplified, which can effectively realize the three-dimensional shape measurement of objects.
参考文献

[1] ZHANG Song, HUANG P S. High-resolution, real-time three-dimensional shape measurement[J].Optical Engineering, 2014, 45(12): 1269-1278.

[2] BUYTAERT J A N, DIRCKX J J J. Phase-shifting Moiré topography using optical demodulation on liquid crystal matrices[J].Optics & Lasers in Engineering, 2010, 48(2): 172-181.

[3] YU Ming-rang, ZHANG Ying-jie, ZHANG Ding. Review of 3D shape measurement using fringe projection techniques[J].Advanced Materials Research, 2012, 503-504: 1437-1440.

[4] 毛翠丽, 卢荣胜, 董敬涛, 等. 相移条纹投影三维形貌测量技术综述[J]. 计量学报, 2018(5): 628-640.

    MAO Cui-li, LU Rong-sheng, DONG Jin-tao, et al. Overview of the 3D profilometry of phase shifting fringe projection[J]. Acta Metrologica Sinica, 2018(5): 628-640.

[5] GHIGLIA C D, PRITT D M T. Two-dimensional phase unwrapping: theory, algorithms, and software[M]. New York, John Wiley & Sons.lnc, 1998.

[6] HUNTLEY J M, SALDNER H. Temporal phase-unwrapping algorithm for automated interferogram analysis[J]. Applied Optics, 1993, 32(17): 3047.

[7] ZHANG Qi-can, SU Xian-yu, XIANG Li-qun, et al. 3-D shape measurement based on complementary Gray-code light[J]. Optics and Lasers in Engineering, 2012, 50(4): 574-579.

[8] XUE Kang, LI Yong. Three-dimensional shape measurement using improved binary spatio-temporal encoded illumination and voting algorithm[J]. Applied Optics, 2011, 50(28): 5508.

[9] WANG Ya-jun, ZHANG Song. Novel phase-coding method for absolute phase retrieval[J]. Optics Letters, 2012, 37(11): 2067.

[10] ZHOU Cai-lin, LIU Tong-chuan, SI Shu-chun, et al. An improved stair phase encoding method for absolute phase retrieval[J]. Optics and Lasers in Engineering, 2015, 66: 269-278.

[11] LI Zhong-wei, ZHONG Kai, LI You-fu, et al. Multiview phase shifting: a full-resolution and high-speed 3D measurement framework for arbitrary shape dynamic objects[J]. Optics Letters, 2013, 38(9): 1389-1391.

[12] ZHONG Kai, LI Zhong-wei, et al. Fast phase measurement profilometry for arbitrary shape objects without phase unwrapping[J]. Optics and Lasers in Engineering, 2013, 51(11): 1213-1222.

[13] SONG Ka-chen, HU Shao-peng, WEN Xin, et al. Fast 3D shape measurement using Fourier transform profilometry without phase unwrapping[J]. Optics and Lasers in Engineering, 2016, 84: 74-81.

[14] 刘瑜, 刘缠牢, 苏海. 一种基于结构光双目视觉的特征匹配算法研究[J]. 光学仪器, 2014, 36(2): 161-166.

    LI Yu, LU Chan-lao, SU Hai. Research on matching algorithm based on structured light binocular vision feature[J]. Optical Instruments, 2014, 36(2): 161-166.

[15] AN Ya-tong, HYUN J S, ZHANG Song. Pixel-wise absolute phase unwrapping using geometric constraints of structured light system[J]. Optics Express, 2016, 24(16): 18445.

[16] DAI Jun-fei, AN Ya-tong, ZHANG Song. Absolute three-dimensional shape measurement with a known object[J]. Optics Express, 2017, 25(9): 10384.

[17] FALCAO G, HURTOS N, MASSICH J. Plane-based calibration of a projector-camera system[J]. VIBOT Master, 2008, 9: 1-12.

[18] 张万祯. 数字投影结构光三维测量方法研究[D]. 杭州: 浙江大学, 2015.

李雯, 蔡宁, 林斌, 曹向群. 基于几何约束的自适应相位解包裹算法[J]. 光子学报, 2019, 48(8): 0810001. LI Wen, CAI Ning, LIN Bin, CAO Xiang-qun. Adaptive Phase Unwrapping Method Based on Geometric Constraint[J]. ACTA PHOTONICA SINICA, 2019, 48(8): 0810001.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!