中国激光, 2016, 43 (2): 0204002, 网络出版: 2016-01-25   

新型声学分辨率光声显微镜系统照明设计

Novel Illumination Design of Acoustic Resolution Photoacoustic Microscopy System
作者单位
1 中国计量学院光学与电子科技学院, 浙江 杭州 310018
2 中国科学院深圳先进技术研究院生物医学光学与分子影像研究室, 广东 深圳 518055
摘要
声学分辨率光声显微镜探测深度可达厘米量级,已有声学分辨率光声显微镜照明方式的主流设计方案在明场、暗场照明方式切换,光能利用率等方面仍存在不足,在一定程度上限制了声学分辨率光声显微镜系统的应用范围。提出了一种能够提高光能利用率,可实现明场、暗场照明切换并增大调节范围的声学分辨率光声显微镜系统设计,利用凸透镜对光束的会聚功能,对发散环形光束产生一定程度的聚焦,减小环形光束的环带尺寸。蒙特卡罗模拟结果显示,最终入射在组织表面的光斑直径得到有效减小,组织中超声换能器有效探测区域的光能流量分布最多可增强6倍,因此光声信号强度也相应地得到线性增强;与此同时,凸透镜的加入还增加了系统光聚焦深度的调节范围,在超声换能器聚焦深度不变的情况下,调节系统的光聚焦深度,有助于在不同样品中获得最佳的光声信号强度。
Abstract
Imaging depth of acoustic resolution photoacoustic microscopy is capable of reaching the centimeter level. There are several drawbacks regarding to the mainstream illumination designs of current acoustic resolution photoacoustic microscopy systems, e.g. switch between bright field illumination and dark field illumination is not available, and the utilization efficiency of laser energy is very low. Therefore, the application of the system is limited. A novel optical illumination design has been proposed to overcome these limitations. A convex lens is applied to focus the diverging ring-shape light before it is reflected by the optical condenser, as a result, the ultimate laser spot on the sample surface can be smaller. The Monte Carlo simulation results show that laser fluence within the volume of effective ultrasound detection has been improved by as much as 6 times, and therefore the intensity of photoacoustic signals can be linearly increased as well. On the other hand, the tuning range of optical focus depth of the system has also been expanded, and after specific tuning, optimal photoacoustic signals can be obtained within different kinds of samples.
参考文献

[1] Maslov K, Stoica G, Wang L V. In vivo dark-field reflection mode photoacoustic microscopy[J]. Optics Letters, 2005, 30(6): 625-627.

[2] Song W, Wei Q, Jiao S. Integrated photoacoustic ophthalmoscopy and spectral-domain optical coherence tomography[J]. Journal of Visualized Experiments, 2013, (71): e4390.

[3] Wang H, Liu C, Song L. In vivo photoacoustic molecular imaging of breast carcinoma with folate receptor-targeted indocyanine green nanoprobes[J]. Nanoscale, 2014, 23: 14270-14279.

[4] Lin R, Chen J, Song L. Longitudinal label-free optical-resolution photoacoustic microscopy of tumor angiogenesis in vivo[J]. Quantitative Imaging in Medicine and Surgery, 2015, 5(1): 23-29.

[5] Song W, Liu W, Zhang H F. Laser-scanning Doppler photoacoustic microscopy based on temporal correlation[J]. Applied Physics Letters, 2013, 102: 203501.

[6] 曾吕明, 刘国栋, 杨迪武. 基于脉冲激光二极管的小型化光学分辨式光声显微成像系统[J]. 中国激光, 2014, 41(10): 1004001.

    Zeng Lüming, Liu Guodong, Yang Diwu. Compact optical-resolution photoacoustic microscopy system based on a pulsed laser diode[J]. Chinese J Lasers, 2014, 41(10): 1004001.

[7] Maslov K, Zhang H F, Wang L V. Optical-resolution photoacoustic microscopy for in vivo imaging of single capillaries[J]. Optics Letters, 2008, 33(9): 929-931.

[8] Sivaramakrishnan M, Maslov K, Wang L V. Limitations of quantitative photoacoustic measurements of blood oxygenation in small vessels [J]. Physics in Medicine and Biology, 2007, 52(5): 1349-1361.

[9] Wang L, Maslov K, Wang L V. Video-rate functional photoacoustic microscopy at depths[J]. Journal of Biomedical Optics, 2012, 17(10): 106007.

[10] Song K H, Wang L V. Deep reflection-mode photoacoustic imaging of biological tissue[J]. Journal of Biomedical Optics, 2007, 12(6): 060503.

[11] Zhang H F, Maslov K, Li M. In vivo volumetric imaging of subcutaneous microvasculature by photoacoustic microscopy[J]. Optics Express, 2006, 14(20): 9317-9323.

[12] Wang L, Jacques A L, Zheng L. MCML - Monte Carlo modeling of light transport in multi-layered tissues[J]. Computer Methods and Programs in Biomedicine, 1995, 47: 131-146.

[13] 靳赛, 谭文疆, 刘鑫. 超短脉冲在散射介质中传播的时间和空间特性研究[J]. 中国激光, 2014, 41(7): 0702004.

    Jin Sai, Tan Wenjiang, Liu Xin. Temporal and spatial characteristics of ultrashort pulse propagation in turbid media[J]. Chinese J Lasers, 2014, 41(7): 0702004.

[14] 张永, 陈斌, 李东. 一种模拟生物组织内光传播的三维几何蒙特卡洛方法[J]. 中国激光, 2015, 42(1): 0104003.

    Zhang Yong, Chen Bin, Li Dong. A three-dimensional geometric Monte Carlo method for simulation of light propagation in biological tissues[J]. Chinese J Lasers, 2015, 42(1): 0104003.

[15] 贾浩, 陈斌, 李东. 模拟皮肤组织中光传播的非结构化网格蒙特卡罗法[J]. 中国激光, 2015, 42(4): 0404001.

    Jia Hao, Chen Bin, Li Dong. Unstructured grid based Monte Carlo method for the simulation of light propagation in skin tissues[J]. Chinese J Lasers, 2015, 42(4): 0404001.

[16] Wang L V, Wu H-I. Biomedical Optics[M]. New Jersey: John Wiley & Sons, Inc., 2007: 5-8.

曾光, 石岩, 宋亮, 刘成波. 新型声学分辨率光声显微镜系统照明设计[J]. 中国激光, 2016, 43(2): 0204002. Zeng Guang, Shi Yan, Song Liang, Liu Chengbo. Novel Illumination Design of Acoustic Resolution Photoacoustic Microscopy System[J]. Chinese Journal of Lasers, 2016, 43(2): 0204002.

本文已被 2 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!