激光与光电子学进展, 2018, 55 (8): 080602, 网络出版: 2018-08-13   

数据中心光互联中低时延路由频谱分配算法 下载: 536次

A Routing and Spectrum Assignment Algorithm with Low Delay in Optical Interconnection of Data Center
作者单位
河北工程大学信息与电气工程学院, 河北 邯郸 056038
摘要
数据中心光互联通过IP网和光网络联合优化,实现了业务跨层疏导,但由于数据中心内部业务的突发性,突发业务被疏导到光网络,导致光网络业务的排队时延和建路时延增加,为此提出一种低时延路由频谱分配(RSA)算法。该算法将光纤中的频谱资源分为多个频谱层,在各频谱层并行建立光路,在频谱层中再用多个线程并行建路。各频谱层中当前建路时用的点和边组成了着色虚拟拓扑,将着色虚拟拓扑作为频谱层中资源使用的约束条件,并根据当前正在建路、未建路、新到达业务请求的变化在各频谱层重构着色和可用虚拟拓扑,来适应突发业务,快速疏导聚集在光网络中的业务请求。仿真结果表明,该算法减少了业务请求的光路平均建立时延,减小了光路建立时延方差和阻塞率,提高了频谱利用率,提升了用户体验质量(QoE)。
Abstract
Requests grooming in multi-layer architecture are realized by the joint optimization of IP and optical networks in optical interconnection of data center. Due to the burstiness of requests in intra-data center, burst requests are groomed to optical network, which leads to the longer delay of queue and establishment of light paths of requests. In order to reduce the establishment delay of optical paths, we propose a routing and spectrum assignment (RSA) algorithm with low delay, which separates the spectrum resource of fibers into spectrum layers, and multi threads can set up optical paths in different spectrum layers in parallel. The algorithm sets up colored virtual topology with the points and edges of establishing optical paths in every spectrum layer, and the topology is used as constraints of resource utilization in current spectrum layer. The colored and usable virtual topologies in spectrum layers are reconfigured according to transformations of establishing, unestablished and new arrived requests, which can adapt bursts of requests and promptly groom the requests swarmed in optical network. The simulation results demonstrate that the proposed algorithm can efficiently reduce the average delay, delay variance of establishment of optical paths and blocking probability of requests, and improve the rate of spectrum utilization and quality of experience (QoE).
参考文献

[1] 杨辉. 面向数据中心光互联的软件定义组网与集成控制研究[D]. 北京: 北京邮电大学, 2014: 56-60.

    Yang H. Research of software defined networking and integrated control for data center optical interconnection[D]. Beijing: Beijing University of Posts and Telecommunications, 2014: 56-60.

[2] 江祥奎, 赵峰, 范永青, 等. 考虑串扰的多纤芯弹性光网络中的频谱分配算法[J]. 激光与光电子学进展, 2017, 54(6): 060601.

    Jiang X K, Zhao F, Fan Y Q, et al. Frequency assignment algorithm for elastic optical network with multi-cores considering crosstalk[J]. Laser & Optoelectronics Progress, 2017, 54(6): 060601.

[3] Yang H, Zhang J, Zhao Y L, et al. Performance evaluation of multi-stratum resources integrated resilience for software defined inter-data center interconnect[J]. Optics Express, 2015, 23(10): 13384-13398.

[4] Yamashita S, Yamada A, Nakatsugawa K, et al. Extension of OpenFlow protocol to support optical transport network, and its implementation[C]∥2015 IEEE Conference on Standards for Communications and Networking (CSCN), October 28-30, 2015, Tokyo, Japan. New York: IEEE, 2015: 263-268.

[5] Yang H, Zhang J, Zhao Y L, et al. Software defined clustered-optical access networking for ubiquitous data center optical interconnection[C]∥2016 International Conference on Computing, Networking and Communications (ICNC), February 15-18, 2016, Kauai, HI, USA. New York: IEEE, 2016: 1-5.

[6] Yang H, Cheng L, Deng J, et al. Cross-layer restoration with software defined networking based on IP over optical transport networks[J]. Optical Fiber Technology, 2015, 25: 80-87.

[7] Zhang L, Tizghadam A, Bannazadeh H, et al. Iterative traffic engineering in the data plane of multimedia IP communications[C]∥2016 IEEE NetSoft Conference and Workshops (Net Soft), June 6-10, 2016, Seoul, South Korea. New York: IEEE, 2016: 107-111.

[8] Lord A, Soppera A, Jacquet A. The impact of capacity growth in national telecommunications networks[J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2016, 374(2062): 20140431.

[9] 宣贺君, 王宇平, 徐展琦, 等. 多纤芯弹性光网络中纤芯选择算法[J]. 光学学报, 2016, 36(12): 1206005.

    Xuan H J, Wang Y P, Xu Z Q, et al. Core selection algorithm for multi-core elastic optical networks[J]. Acta Optica Sinica, 2016, 36(12): 1206005.

[10] Rozic C, Klonidis D, Tomkos I. Latency-aware multi-layer network optimization in IP-over-WDM core networks[C]∥Proceedings of ECOC 2016; 42nd European Conference on Optical Communication, September 18-22, 2016, Dusseldorf, Germany. Frankfurt: VDE, 2016: 1-3.

[11] Yi P, Ramamurthy B. Provisioning virtualized cloud services in IP/MPLS-over-EON networks[J]. Photonic Network Communications, 2016, 31(3): 418-431.

[12] 叶飞, 高建河, 周小平. 光通信系统中的波长分配方法、光网络单元及光网络系统: CN102388557A[P].2012-03-21.

    Ye F, Gao J H, Zhou X P. Wavelength distribution method in optical communication system, optical network unit and optical network system: CN102388557A[P]. 2012-03-21.

[13] 李非. 一种用于光网络的波长路由方法及系统: CN101754058A[P]. 2010-06-23.

    Li F. Wavelength routing method and system for optical network: CN101754058A[P]. 2010-06-23.

[14] 郭宏, 杨润利, 王文彦, 等. 基于物理损伤感知的低时延RSA算法[J]. 光通信技术, 2017, 41(5): 15-18.

    Guo H, Yang R L, Wang W Y, et al. Physical layer impairment-aware and less delay RSA algorithm in flexible optical networks[J]. Optical Communication Technology, 2017, 41(5): 15-18.

[15] Lu W, Zhou X, Gong L, et al. Dynamic multi-path service provisioning under differential delay constraint in elastic optical networks[J]. IEEE Communications Letters, 2013, 17(1): 158-161.

[16] Yang H, Zhang J, Zhao Y L, et al. Time-aware software defined networking for OpenFlow-based datacenter optical networks[J]. Network Protocols and Algorithms, 2014, 6(4): 77-91.

[17] Magalhes F G D , Priti R, Nikdast M, et al. Design and modelling of a low-latency centralized controller for optical integrated networks[J]. IEEE Communications Letters, 2016, 20(3): 462-465.

[18] Zhang M Y, You C S, Zhu Z Q. On the parallelization of spectrum defragmentation reconfigurations in elastic optical networks[J]. IEEE/ACM Transactions on Networking, 2016, 24(5): 2819-2833.

[19] 孟凡. 低时延光传送网实现方案[J]. 电信科学, 2016, 32(S1): 238-244.

    Meng F. Implementation scheme of low latency for optical transport networks[J]. Telecommunications Science, 2016, 32(S1): 238-244.

[20] Wan X, Hua N, Zhang H, et al. Study on dynamic routing and spectrum assignment in bitrate flexible optical networks[J]. Photonic Network Communications, 2012, 24(3): 219-227.

[21] Talebi S, Alam F, Katib I, et al. Spectrum management techniques for elastic optical networks: a survey[J]. Optical Switching and Networking, 2014, 13: 34-48.

[22] Alaskar R W, Ahmad I, Alyatama A. Offline routing and spectrum allocation algorithms for elastic optical networks[J]. Optical Switching and Networking, 2016, 21: 79-92.

[23] Zhao Y, Iannone L, Riguidel M. On the performance of SDN controllers: a reality check[C]∥2015 IEEE Conference on Network Function Virtualization and Software Defined Network (NFV-SDN), November 18-21, 2015, San Francisco, CA, USA. New York: IEEE, 2015: 79-85.

[24] Shalimov A, Zuikov D, Zimarina D, et al. Advanced study of SDN/OpenFlow controllers[C]∥Proceedings of the 9th Central & Eastern European Software Engineering Conference in Russia (CEE-SECR), October 24-25, 2013, New York, NY, USA. New York: ACM, 2013: 1.

[25] Scott-Hayward S. Design and deployment of secure, robust, and resilient SDN controllers[C]∥2015 1st IEEE Conference on Network Softwarization (NetSoft), April 13-17, 2015, London, UK. New York: IEEE, 2015: 1-5.

[26] Mijumbi R, Serrat J, Gorricho J L, et al. Network function virtualization: state-of-the-art and research challenges[J]. IEEE Communications Surveys & Tutorials, 2016, 18(1): 236-262.

[27] Peng L, Chen M, Park K, et al. Virtual-pod-assisted routing and resource assignment in elastic all-optical intra-datacenter networks[J]. IEEE Access, 2016, 5: 406-420.

[28] 赵继军, 郑斗, 胡劲华, 等. 弹性光网络中节点优先的虚拟网络映射算法[J]. 中国激光, 2017, 44(9): 0906003.

    Zhao J J, Zheng D, Hu J H, et al. Node-first virtual network mapping algorithm in elastic optical network[J]. Chinese Journal of Lasers, 2017, 44(9): 0906003.

[29] Ghazisaeedi E, Huang C. Energy-aware node and link reconfiguration for virtualized network environments[J]. Computer Networks : The International Journal of Computer and Telecommunications Networking, 2015, 93(P3): 460-479.

[30] Eramo V, Ammar M, Lavacca F G. Migration energy aware reconfigurations of virtual network function instances in NFV architectures[J]. IEEE Access, 2017, 5: 4927-4938.

[31] Wang W, Zhao Y L, He R Y, et al. Continuity aware spectrum allocation schemes for virtual optical network embedding in elastic optical networks[J]. Optical Fiber Technology, 2016, 29: 28-33.

[32] Huang H B, Huang S G, Yin S, et al. Virtual network provisioning over space division multiplexed optical networks using few-mode fibers[J]. IEEE/OSA Journal of Optical Communications and Networking, 2016, 8(10): 726-733.

[33] Hsu C F, Chang Y C, Sie S C. Graph-model-based dynamic routing and spectrum assignment in elastic optical networks[J]. IEEE/OSA Journal of Optical Communications and Networking, 2016, 8(7): 507-520.

赵继军, 郭宏. 数据中心光互联中低时延路由频谱分配算法[J]. 激光与光电子学进展, 2018, 55(8): 080602. Zhao Jijun, Guo Hong. A Routing and Spectrum Assignment Algorithm with Low Delay in Optical Interconnection of Data Center[J]. Laser & Optoelectronics Progress, 2018, 55(8): 080602.

本文已被 3 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!