中国激光, 2016, 43 (12): 1203001, 网络出版: 2016-12-09   

微粗糙光学表面与掩埋多体粒子复合光散射特性 下载: 622次

Composite Light Scattering Properties Between Slightly Rough OpticalSurface and Multi-Body Particles
作者单位
1 西安工业大学光电工程学院, 陕西 西安 710032
2 西安电子科技大学物理与光电工程学院, 陕西 西安 710071
摘要
基于时域有限差分法/时域多分辨(FDTD/MRTD)混合方法研究了微粗糙光学表面与多体缺陷粒子的复合光散射问题。建立微粗糙光学表面与掩埋多体粒子复合散射模型,利用DB2小波尺度函数的移位内插原理,将计算区域分别划分为MRTD和FDTD方法区域,推导出复合散射场,计算微粗糙光学表面中掩埋多体粒子的复合散射截面,并与矩量法的结果比较以验证该方法的有效性。分析入射角、气泡粒子的个数、相对位置及深度等物性特征对微粗糙光学表面与掩埋多体粒子复合双站散射截面的影响。上述结果为光学无损检测、光学薄膜、微纳米结构的光学性能设计等领域提供技术支持。
Abstract
Based on the finite difference time domain/multi-resolution time domain (FDTD/MRTD) method, composite scattering between slightly rough optical surface and buried multi-body defect particles was researched. The concept of multi-body defect particles is put forward and the composite scattering model of slightly rough optical surface and buried particles is established. The computational domain is divided into MRTD method domain and FDTD method domain based on displacement interpolation principle of DB2 wavelet scale function, and the composite scattering field is deduced. Composite scattering cross sections of buried multi-body particles are discussed in detail. Results are compared with those obtained with the method of moment, and they are found to be consistent very well, thereby proving the reliability of the proposed method. The effects of incidence angle, sphere number and sphere separation distance on composite scattering are studied. The study will provide technological support for the fields of nondestructive examination, optical film, optical performance design of micro- and nano- structures etc.
参考文献

[1] 尤科伟, 张艳丽, 张雪洁, 等. 光学元件表面缺陷相对位置分布对近场光束质量的影响[J]. 中国激光, 2015, 42(3): 0308004.

    You Kewei, Zhang Yanli, Zhang Xuejie, et al. Influence of relative position of optical component surface defects on near field beam quality[J]. Chinese J Lasers, 2015, 42(3): 0308004.

[2] 田爱玲, 王辉, 王春慧, 等. 光学元件亚表面损伤的激光散射仿真研究[J]. 中国激光, 2013, 40(9): 0908006.

    Tian Ailing, Wang Hui, Wang Chunhui, et al. Simulation research on the light-scattering properties of the subsurface damage of optical components[J]. Chinese J Lasers, 2013, 40(9): 0908006.

[3] Bobbert P A, Vlieger J. Light scattering by a sphere on a substrate[J]. Physica A, 1986, 137(1-2): 209-242.

[4] Taubenblatt M A, Tran T K. Calculation of light scattering from particles and structures on a surface by the coupled-dipole method[J]. Journal of the Optical Society of America A, 1993, 10(5): 912-919.

[5] Videen G, Hsu J Y, Bickel W S, et al. Polarized light scattered from rough surfaces[J]. Journal of the Optical Society of America A, 1992, 9(7): 1111-1118.

[6] Schmehl R, Nebeker B M, Hirleman E D. Discrete-dipole approximation for scattering by features on surfaces by means of a two-dimensional fast Fourier transform technique[J]. Journal of the Optical Society of America A, 1997, 14(11): 3026-3036.

[7] Gong L, Wu Z S, Li Z J, et al. An improved analysis of the scattering properties of half-space problem with multiple defect particles for an optical surface[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2015, 162: 184-189.

[8] 巩蕾, 吴振森, 高明. 基片与不同方位多形态缺陷粒子的复合光散射特性分析[J]. 光学学报, 2012, 32(6): 0629003.

    Gong Lei, Wu Zhensen, Gao Ming. Analysis of composite light scattering properties between wafers and many shapes of particles with different positions[J]. Acta Optica Sinica, 2012, 32(6): 0629003.

[9] 巩蕾, 吴振森. 基片表面微球体纳米级缺陷的光散射分析[J]. 中国激光, 2011, 38(1): 0110001.

    Gong Lei, Wu Zhensen. Analysis of light scattering about slightly non-spherical nanoparticles on wafers[J]. Chinese J Lasers, 2011, 38(1): 0110001.

[10] Liu C Y, Liu T A, Fu W E. Out-of-plane ellipsometry measurements of nanoparticles on surfaces for thin film coated wafer inspection[J]. Optics & Laser Technology, 2010, 42(6): 902-910.

[11] 郭立新, 王蕊, 吴振森. 随机粗糙面散射的基本理论与方法[M]. 北京: 科学出版社, 2009: 2-4.

[12] Dai S Y, Wu Z S. Wavelet-Galerkin of time domain method to analyze the scattering problems of randomly rough surface[J]. Microwave and Optical Technology Letters, 2007, 49(4): 928-931.

[13] Wolfe C T, Gedney S D. Implementation of a domain decomposition method on a high performance parallel platform for the solution of large electromagnetic problems[J]. Electromagnetics, 2007, 27(7): 399-411.

[14] Dai S Y, Wu Z S. A new hybrid of FDTD/MRTD for electromagnetic scattering problems[J]. Chinese Journal of Electronics, 2006, 15: 754-757.

[15] Tsang L, Kong J A, Ding K H, et al. Scattering of electromagnetic waves, numerical simulations[M]. New York: John & Wiley, 2001: 148.

[16] 李娟. 粗糙面及其与目标复合电磁散射的FDTD方法研究[D]. 西安: 西安电子科技大学, 2010: 23-25.

    Li Juan. FDTD method investigation on the electromagnetic scattering of rough surface and the composite scattering of rough surface and target[D]. Xi′an: Xidian University, 2010: 23-25.

巩蕾, 吴振森, 葛城显, 高明, 潘永强. 微粗糙光学表面与掩埋多体粒子复合光散射特性[J]. 中国激光, 2016, 43(12): 1203001. Gong Lei, Wu Zhensen, Ge Chengxian, Gao Ming, Pan Yongqiang. Composite Light Scattering Properties Between Slightly Rough OpticalSurface and Multi-Body Particles[J]. Chinese Journal of Lasers, 2016, 43(12): 1203001.

本文已被 5 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!