中国激光, 2009, 36 (5): 1029, 网络出版: 2009-05-22   

飞秒激光与宽禁带物质相互作用过程中光子-电子-声子之间的微能量传导 第二部分:相变过程

Microscopic energy transport through photon-electron-phonon interactions during ultrashort laser ablation of wide bandgap materials Part Ⅱ: phase change
作者单位
1 北京理工大学 三院 机械制造及其自动化系, 北京 100081
2 北京理工大学 国际教育合作学院, 北京 100081
3 Laser-Based Manufacturing Laboratory Department of Mechanical and Aerospace Engineering,Missouri University of Science & Technology (formerly University of Missouri-Rolla) Rolla, MO 65409, USA
引用该论文

姜澜, 李丽珊, Hai-Lung Tsai, 王素梅. 飞秒激光与宽禁带物质相互作用过程中光子-电子-声子之间的微能量传导 第二部分:相变过程[J]. 中国激光, 2009, 36(5): 1029.

Lan Jiang, Lishan Li, Sumei Wang, Hai-Lung Tsai. Microscopic energy transport through photon-electron-phonon interactions during ultrashort laser ablation of wide bandgap materials Part Ⅱ: phase change[J]. Chinese Journal of Lasers, 2009, 36(5): 1029.

参考文献

[1] . Stoian, D. Ashkenasi, A. Rosenfeld et al.. Coulomb explosion in ultrashort pulsed laser ablation of Al2O3[J]. Phys. Rev. B, 2000, 62(19): 13167-13173.

[2] . N. Glezer, Y. Siegal, L. Huang et al.. Behavior of χ(2) during a laser-induced phase transition in GaAs[J]. Phys. Rev. B, 1995, 51(15): 9589-9596.

[3] . Miotello, R. Kelly. Laser-induced phase explosion: new physical problems when a condensed phase approaches the thermodynamic critical temperature[J]. Appl. Phys. A Suppl., 1999, 69(7): S67-S73.

[4] . Toulemonde, C. Dufour, A. Meftah et al.. Transient thermal processes in heavy ion irradiation of crystalline inorganic insulators[J]. Nucl. Instrum. Methods Phys. Res. B, 2000, 166: 903-912.

[5] . Stoian, H. Varel, A. Rosenfeld et al.. Ion time-of-flight analysis of ultrashort pulsed laser-induced processing of Al2O3[J]. Appl. Surf. Sci., 2000, 165(1): 44-55.

[6] . Brabec, F. Krausz. Intense few-cycle laser fields: Frontiers of nonlinear optics[J]. Rev. Mod. Phys., 2000, 72(2): 545-591.

[7] . P. Krainov, A. S. Roshchupkin. Dynamics of the Coulomb explosion of large hydrogen iodide clusters irradiated by superintense ultrashort laser pulses[J]. Phys. Rev. A, 2001, 64(6): 063204.

[8] E. G. Gamaly, V. T. Tikhonchuk, A. V. Rode. COLA03, October 5-10, Hersonissos, Crete, Greece, 2003

[9] . L. Silvestrelli, A. Alavi, M. Parrinello et al.. Ab initio molecular dynamics simulation laser melting of silicon[J]. Phys. Rev. Lett., 1996, 77(15): 3149-3152.

[10] L. Jiang, H. L. Tsai. Femtosecond Laser Ablation: Challenges and Opportunities, NSF Workshop on “Unsolved Problems and Research Needs in Thermal Aspects of Material Removal Processes, June 10-12, Stillwater, OK, 2003

[11] . Stoian, A. Rosenfeld, D. Ashkenasi et al.. Surface charging and impulsive ion ejection during ultrashort pulsed laser ablation[J]. Phys. Rev. Lett., 2002, 88(9): 097603.

[12] . Stampfli, K. H. Bennemann. Dynamical theory of the laser-induced lattice instability of silicon[J]. Phys. Rev. B, 1992, 46(17): 10686-10692.

[13] . Sokolowski-Tinten, J. Bialkowski, M. Boing et al.. Thermal and nonthermal melting of gallium arsenide after femtosecond laser excitation[J]. Phys. Rev. B, 1998, 58(18): R11805-R11808.

[14] C. Cornaggia. in Molecules and Clusters in Intense Laser Fields, edited by J. Posthumus Cambridge University Press, Cambridge, U. K., 2001

[15] . P. Cheng, J. D. Gillaspy. Nanoscale modification of silicon surfaces via Coulomb explosion[J]. Phys. Rev. B, 1997, 55(4): 2628-2636.

[16] . Simon, J. Ihlemann. Machining of submicron structures on metals and semiconductors by ultrashort UV-laser pulses[J]. Appl. Phys. A, 1996, 63(5): 505-508.

[17] A. C. Tam, H. K. Park, C. P. Grigoropoulos. Laser cleaning of surface contaminants[J]. Appl. Surf. Sci., 1998, 127~129: 721~725

[18] . L. Brand, A. C. Tam. Mechanism of picosecond ultraviolet laser sputtering of sapphire at 266 nm[J]. Appl. Phys. Lett., 1990, 56(10): 883-885.

[19] . Ashkenasi, A. Rosenfeld, H. Varel et al.. Laser processing of sapphire with picosecond and sub-picosecond pulses[J]. Appl. Surf. Sci., 1997, 120: 65-80.

[20] . Ye, C. P. Grigoropoulos. Time-of-flight and emission spectroscopy study of femtosecond laser ablation of titanium[J]. J. Appl. Phys., 2001, 89(9): 5183-5190.

[21] E. M. Lifshitz, L. P. Pitaevskii. Physical Kinetics[M]. Pergamon, Oxford, 1981

[22] . Y. Bychenkov, V. T. Tikhonchuk, S. V. Tolokonnikov. Nuclear reactions triggered by laser-accelerated high-energy ions[J]. J. Exp. Theor. Phys., 1999, 88(6): 1137-1142.

[23] . G. Gamaly, A. V. Rode, B. Luther-Davies et al.. Ablation of solids by femtosecond lasers: ablation mechanism and ablation thresholds for metals and dielectrics[J]. Phys. Plas., 2002, 9(3): 949-957.

[24] . M. Bulgakova, R. Stoian, A. Rosenfeld et al.. Electronic transport and consequences for material removal in ultrafast pulsed laser ablation of materials[J]. Phys. Rev. B, 2004, 69(5): 054102.

[25] . M. Bulgakova, R. Stoian, A. Rosenfeld et al.. A general continuum approach to describe fast electronic transport in pulsed laser irradiated materials: The problem of Coulomb explosion[J]. Appl. Phys. A, 2005, 81(2): 345-356.

[26] . Ladieu, P. Martin, S. Guizard. Measuring thermal effects in femtosecond laser-induced breakdown of dielectrics[J]. Appl. Phys. Lett., 2002, 81(6): 957-959.

[27] . Schmidt, W. Husinsky, G. Betz. Dynamics of laser desorption and ablation of metals at the threshold on the femtosecond time scale[J]. Phys. Rev. Lett., 2000, 85(16): 3516-3519.

[28] . Axente, S. Noel, J. Hermann et al.. Correlation between plasma expansion and damage threshold by femtosecond laser ablation of fused silica[J]. J. Phys. D: Appl. Phys., 2008, 41(10): 105216.

[29] . Sokolowski-Tinten, J. Bialkowski, A. Cavalleri et al.. Transient states of matter during short pulse laser ablation[J]. Phys. Rev. Lett., 1998, 81(1): 224-227.

[30] . O. Jeschke, M. E. Garcia, K. H. Bennemann. Theory for the ultrafast ablation of graphite films[J]. Phys. Rev. Lett., 2001, 87(1): 015003.

[31] . Lenzner, J. Krüger, S. Sartania et al.. Femtosecond optical breakdown in dielectrics[J]. Phys. Rev. Lett., 1998, 80(18): 4076-4079.

[32] . Li, S. Menon, J. P. Nibarger et al.. Ultrafast electron dynamics in femtosecond optical breakdown of dielectrics[J]. Phys. Rev. Lett., 1999, 82(12): 2394-2397.

[33] . Du, X. Liu, G. Korn et al.. Laser-induced breakdown by impact ionization in SiO2 with pulse widths from 7 ns to 150 fs[J]. Appl. Phys. Lett., 1994, 64(23): 3071-3073.

[34] . C. Stuart, M. D. Feit, S. Herman et al.. Nanosecond-to-femtosecond laser-induced breakdown in dielectrics[J]. Phys. Rev. B, 1996, 53(4): 1749-1761.

[35] . D. Perry, B. C. Stuart, P. S. Banks et al.. Ultrashort-pulse laser machining of dielectric materials[J]. J. Appl. Phys., 1999, 85(9): 6803-6810.

[36] . V. Keldysh. Ionization in the field of a strong electromagnetic wave[J]. Sov. Phys. JETP, 1965, 20: 1307-1314.

[37] . E. Gruzdev. Photoionization rate in wide band-gap crystals[J]. Phys. Rev. B, 2007, 75(20): 205106.

[38] V. E. Gruzdev. in Laser Ablation and its Applications[M]. ed. by C.R. Phipps, Springer, Berlin Heidelberg New York, 2006, 99~121

[39] . E. Gruzdev. Features of the laser ionization of crystalline broad-band insulators[J]. J. Opt. Technol., 2006, 73(6): 385-390.

[40] . E. Gruzdev, J. K. Chen. Laser-induced ionization and intrinsic breakdown of wide band-gap solids[J]. Appl. Phys. A, 2008, 90(2): 255-261.

[41] . Efimov, S. Juodkazis, H. Misawa. Intrinsic single- and multiple-pulse laser-induced damage in silicate glasses in the femtosecond-to-nanosecond region[J]. Phys. Rev. A, 2004, 69(4): 042903.

[42] S. Juodkazis, T. Kondo, A. Rode et al.. Three-dimensional recording and structuring of chalcogenide glasses by femtosecond pulses[C]. SPIE, 2004, 5662: 179~184

[43] . H. Chowdhury, A. Q. Wu, X. Xu et al.. Ultra-fast laser absorption and ablation dynamics in wide-band-gap dielectrics[J]. Appl. Phys. A, 2005, 81(8): 1627-1632.

[44] . Q. Wu, I. H. Chowdhury, X. Xu. Femtosecond laser absorption in fused silica: Numerical and experimental investigation[J]. Phys. Rev. B, 2005, 72(8): 085128.

[45] . B. Ashcom, R. R. Gattass, C. B. Schaffer et al.. Numerical aperture dependence of damage and supercontinuum generation from femtosecond laser pulses in bulk fused silica[J]. J. Opt. Soc. Am. B, 2006, 23(11): 2317-2322.

[46] L. B. Glebov. Intrinsic laser-induced breakdown of silicate glasses[C]. SPIE, 2002, 4679: 321~331

[47] . B. Glebov, O. M. Efimov. Study of the characteristics of and mechanism of optical breakdown[J]. Bull. Acad. Sci. USSR Phys. Ser., 1985, 49: 94.

[48] O. M. Efimov, L. B. Glebov, V. S. Popikov et al.. Laser-induced damage of glasses by pulsed radiation in nano-picosecond region[C]. SPIE, 1996, 2770: 162~167

[49] . Q. Jia, H. X. Chen, M. Huang et al.. Ultraviolet-infrared femtosecond laser-induced damage in fused silica and CaF2 crystals[J]. Phys. Rev. B, 2006, 73(5): 054105.

[50] . Q. Jia, Z. Z. Xu, X. X. Li et al.. Microscopic mechanisms of ablation and micromachining of dielectrics by using femtosecond lasers[J]. Appl. Phys. Lett., 2003, 82(24): 4382-4384.

[51] Y. M. Oh, S. H. Lee, S. Park et al.. A numerical study on ultra-short pulse laser-induced damage on dielectrics using the Fokker-Planck equation[J]. Int. J. Heat Mass Transfer, 2006, 49(7~8): 1493~1500

[52] D. Ashkenasi, M. Lorenz, R. Stoian et al.. Surface damage threshold and structuring of dielectrics using femtosecond laser pulses: the role of incubation[J]. Appl. Surf. Sci., 1999, 150(1~4): 101~106

[53] J. Krüger, M. Lenzner, S. Martin et al.. Single- and multi-pulse femtosecond laser ablation of optical filter materials[J]. Appl. Surf. Sci., 2003, 208~209: 233~237

[54] X. C. Wang, G. C. Lim, H. Y. Zheng et al.. Femtosecond pulse laser ablation of sapphire in ambient air[J]. Appl. Surf. Sci., 2004, 228(1~4): 221~226

[55] . Krüger, W. Kautek. The femtosecond pulse laser: a new tool for micromachining[J]. Laser Phys., 1999, 9(1): 30-40.

[56] . D. Shirk, P. A. Molian. A review of ultrashort pulsed laser ablation of materials[J]. J. Laser Appl., 1998, 10(1): 18-28.

[57] L. Jiang, H. L. Tsai. Energy transport and material removal in wide bandgap materials by a femtosecond laser pulse[J]. Int. J. Heat Mass Transfer, 2005, 48(3~4): 487~499

[58] . Jiang, H. L. Tsai. Energy transport and nanostructuring of dielectrics by femtosecond laser pulse trains[J]. J. Heat Transfer, 2006, 128(9): 926-933.

[59] . M. Burakov, N. M. Bulgakova, R. Stoian et al.. Theoretical investigations of material modification using temporally shaped femtosecond laser pulses[J]. Appl. Phys. A, 2005, 81(8): 1639-1645.

姜澜, 李丽珊, Hai-Lung Tsai, 王素梅. 飞秒激光与宽禁带物质相互作用过程中光子-电子-声子之间的微能量传导 第二部分:相变过程[J]. 中国激光, 2009, 36(5): 1029. Lan Jiang, Lishan Li, Sumei Wang, Hai-Lung Tsai. Microscopic energy transport through photon-electron-phonon interactions during ultrashort laser ablation of wide bandgap materials Part Ⅱ: phase change[J]. Chinese Journal of Lasers, 2009, 36(5): 1029.

本文已被 2 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!