中国激光, 2009, 36 (5): 1029, 网络出版: 2009-05-22   

飞秒激光与宽禁带物质相互作用过程中光子-电子-声子之间的微能量传导 第二部分:相变过程

Microscopic energy transport through photon-electron-phonon interactions during ultrashort laser ablation of wide bandgap materials Part Ⅱ: phase change
作者单位
1 北京理工大学 三院 机械制造及其自动化系, 北京 100081
2 北京理工大学 国际教育合作学院, 北京 100081
3 Laser-Based Manufacturing Laboratory Department of Mechanical and Aerospace Engineering,Missouri University of Science & Technology (formerly University of Missouri-Rolla) Rolla, MO 65409, USA
摘要
飞秒激光烧蚀过程中的微能量传导过程包括两个阶段:1)脉冲激光入射到物质上时电子对激光能量的吸收过程;2)激光脉冲照射后电子所吸收的能量在物质中重新分布导致的材料去除过程,即相变过程。本文讨论了飞秒激光,特别是功率密度在1013 ~ 1014 W/cm2的脉冲与宽禁带物质相互作用中相变过程的理论研究进展,分析了飞秒激光烧蚀过程中的材料去除机理,尤其是热气化和库仑爆炸两种机理。根据对飞秒激光烧蚀中微能量传导过程的讨论,总结了烧蚀阈值功率密度和烧蚀深度计算方面仍有待解决的问题。
Abstract
Energy transport in femtosecond laser ablation can be divided into two stages: 1) laser energy absorption by electrons during the pulse irradiation, and 2) phase change stage that absorbed energy redistributes in bulk materials leading to material removals. We review challenges in understanding the phase change process mainly for the femtosecond ablation of wide bandgap materials at the intensities on the order of 1013~1014 W/cm2. Thermal vaporization and Coulomb explosion are two major mechanisms considered for material removals. Based on the discussions of energy transport, the estimation equations and unsolved problems for threshold fluence and ablation depth are presented.
参考文献

[1] . Stoian, D. Ashkenasi, A. Rosenfeld et al.. Coulomb explosion in ultrashort pulsed laser ablation of Al2O3[J]. Phys. Rev. B, 2000, 62(19): 13167-13173.

[2] . N. Glezer, Y. Siegal, L. Huang et al.. Behavior of χ(2) during a laser-induced phase transition in GaAs[J]. Phys. Rev. B, 1995, 51(15): 9589-9596.

[3] . Miotello, R. Kelly. Laser-induced phase explosion: new physical problems when a condensed phase approaches the thermodynamic critical temperature[J]. Appl. Phys. A Suppl., 1999, 69(7): S67-S73.

[4] . Toulemonde, C. Dufour, A. Meftah et al.. Transient thermal processes in heavy ion irradiation of crystalline inorganic insulators[J]. Nucl. Instrum. Methods Phys. Res. B, 2000, 166: 903-912.

[5] . Stoian, H. Varel, A. Rosenfeld et al.. Ion time-of-flight analysis of ultrashort pulsed laser-induced processing of Al2O3[J]. Appl. Surf. Sci., 2000, 165(1): 44-55.

[6] . Brabec, F. Krausz. Intense few-cycle laser fields: Frontiers of nonlinear optics[J]. Rev. Mod. Phys., 2000, 72(2): 545-591.

[7] . P. Krainov, A. S. Roshchupkin. Dynamics of the Coulomb explosion of large hydrogen iodide clusters irradiated by superintense ultrashort laser pulses[J]. Phys. Rev. A, 2001, 64(6): 063204.

[8] E. G. Gamaly, V. T. Tikhonchuk, A. V. Rode. COLA03, October 5-10, Hersonissos, Crete, Greece, 2003

[9] . L. Silvestrelli, A. Alavi, M. Parrinello et al.. Ab initio molecular dynamics simulation laser melting of silicon[J]. Phys. Rev. Lett., 1996, 77(15): 3149-3152.

[10] L. Jiang, H. L. Tsai. Femtosecond Laser Ablation: Challenges and Opportunities, NSF Workshop on “Unsolved Problems and Research Needs in Thermal Aspects of Material Removal Processes, June 10-12, Stillwater, OK, 2003

[11] . Stoian, A. Rosenfeld, D. Ashkenasi et al.. Surface charging and impulsive ion ejection during ultrashort pulsed laser ablation[J]. Phys. Rev. Lett., 2002, 88(9): 097603.

[12] . Stampfli, K. H. Bennemann. Dynamical theory of the laser-induced lattice instability of silicon[J]. Phys. Rev. B, 1992, 46(17): 10686-10692.

[13] . Sokolowski-Tinten, J. Bialkowski, M. Boing et al.. Thermal and nonthermal melting of gallium arsenide after femtosecond laser excitation[J]. Phys. Rev. B, 1998, 58(18): R11805-R11808.

[14] C. Cornaggia. in Molecules and Clusters in Intense Laser Fields, edited by J. Posthumus Cambridge University Press, Cambridge, U. K., 2001

[15] . P. Cheng, J. D. Gillaspy. Nanoscale modification of silicon surfaces via Coulomb explosion[J]. Phys. Rev. B, 1997, 55(4): 2628-2636.

[16] . Simon, J. Ihlemann. Machining of submicron structures on metals and semiconductors by ultrashort UV-laser pulses[J]. Appl. Phys. A, 1996, 63(5): 505-508.

[17] A. C. Tam, H. K. Park, C. P. Grigoropoulos. Laser cleaning of surface contaminants[J]. Appl. Surf. Sci., 1998, 127~129: 721~725

[18] . L. Brand, A. C. Tam. Mechanism of picosecond ultraviolet laser sputtering of sapphire at 266 nm[J]. Appl. Phys. Lett., 1990, 56(10): 883-885.

[19] . Ashkenasi, A. Rosenfeld, H. Varel et al.. Laser processing of sapphire with picosecond and sub-picosecond pulses[J]. Appl. Surf. Sci., 1997, 120: 65-80.

[20] . Ye, C. P. Grigoropoulos. Time-of-flight and emission spectroscopy study of femtosecond laser ablation of titanium[J]. J. Appl. Phys., 2001, 89(9): 5183-5190.

[21] E. M. Lifshitz, L. P. Pitaevskii. Physical Kinetics[M]. Pergamon, Oxford, 1981

[22] . Y. Bychenkov, V. T. Tikhonchuk, S. V. Tolokonnikov. Nuclear reactions triggered by laser-accelerated high-energy ions[J]. J. Exp. Theor. Phys., 1999, 88(6): 1137-1142.

[23] . G. Gamaly, A. V. Rode, B. Luther-Davies et al.. Ablation of solids by femtosecond lasers: ablation mechanism and ablation thresholds for metals and dielectrics[J]. Phys. Plas., 2002, 9(3): 949-957.

[24] . M. Bulgakova, R. Stoian, A. Rosenfeld et al.. Electronic transport and consequences for material removal in ultrafast pulsed laser ablation of materials[J]. Phys. Rev. B, 2004, 69(5): 054102.

[25] . M. Bulgakova, R. Stoian, A. Rosenfeld et al.. A general continuum approach to describe fast electronic transport in pulsed laser irradiated materials: The problem of Coulomb explosion[J]. Appl. Phys. A, 2005, 81(2): 345-356.

[26] . Ladieu, P. Martin, S. Guizard. Measuring thermal effects in femtosecond laser-induced breakdown of dielectrics[J]. Appl. Phys. Lett., 2002, 81(6): 957-959.

[27] . Schmidt, W. Husinsky, G. Betz. Dynamics of laser desorption and ablation of metals at the threshold on the femtosecond time scale[J]. Phys. Rev. Lett., 2000, 85(16): 3516-3519.

[28] . Axente, S. Noel, J. Hermann et al.. Correlation between plasma expansion and damage threshold by femtosecond laser ablation of fused silica[J]. J. Phys. D: Appl. Phys., 2008, 41(10): 105216.

[29] . Sokolowski-Tinten, J. Bialkowski, A. Cavalleri et al.. Transient states of matter during short pulse laser ablation[J]. Phys. Rev. Lett., 1998, 81(1): 224-227.

[30] . O. Jeschke, M. E. Garcia, K. H. Bennemann. Theory for the ultrafast ablation of graphite films[J]. Phys. Rev. Lett., 2001, 87(1): 015003.

[31] . Lenzner, J. Krüger, S. Sartania et al.. Femtosecond optical breakdown in dielectrics[J]. Phys. Rev. Lett., 1998, 80(18): 4076-4079.

[32] . Li, S. Menon, J. P. Nibarger et al.. Ultrafast electron dynamics in femtosecond optical breakdown of dielectrics[J]. Phys. Rev. Lett., 1999, 82(12): 2394-2397.

[33] . Du, X. Liu, G. Korn et al.. Laser-induced breakdown by impact ionization in SiO2 with pulse widths from 7 ns to 150 fs[J]. Appl. Phys. Lett., 1994, 64(23): 3071-3073.

[34] . C. Stuart, M. D. Feit, S. Herman et al.. Nanosecond-to-femtosecond laser-induced breakdown in dielectrics[J]. Phys. Rev. B, 1996, 53(4): 1749-1761.

[35] . D. Perry, B. C. Stuart, P. S. Banks et al.. Ultrashort-pulse laser machining of dielectric materials[J]. J. Appl. Phys., 1999, 85(9): 6803-6810.

[36] . V. Keldysh. Ionization in the field of a strong electromagnetic wave[J]. Sov. Phys. JETP, 1965, 20: 1307-1314.

[37] . E. Gruzdev. Photoionization rate in wide band-gap crystals[J]. Phys. Rev. B, 2007, 75(20): 205106.

[38] V. E. Gruzdev. in Laser Ablation and its Applications[M]. ed. by C.R. Phipps, Springer, Berlin Heidelberg New York, 2006, 99~121

[39] . E. Gruzdev. Features of the laser ionization of crystalline broad-band insulators[J]. J. Opt. Technol., 2006, 73(6): 385-390.

[40] . E. Gruzdev, J. K. Chen. Laser-induced ionization and intrinsic breakdown of wide band-gap solids[J]. Appl. Phys. A, 2008, 90(2): 255-261.

[41] . Efimov, S. Juodkazis, H. Misawa. Intrinsic single- and multiple-pulse laser-induced damage in silicate glasses in the femtosecond-to-nanosecond region[J]. Phys. Rev. A, 2004, 69(4): 042903.

[42] S. Juodkazis, T. Kondo, A. Rode et al.. Three-dimensional recording and structuring of chalcogenide glasses by femtosecond pulses[C]. SPIE, 2004, 5662: 179~184

[43] . H. Chowdhury, A. Q. Wu, X. Xu et al.. Ultra-fast laser absorption and ablation dynamics in wide-band-gap dielectrics[J]. Appl. Phys. A, 2005, 81(8): 1627-1632.

[44] . Q. Wu, I. H. Chowdhury, X. Xu. Femtosecond laser absorption in fused silica: Numerical and experimental investigation[J]. Phys. Rev. B, 2005, 72(8): 085128.

[45] . B. Ashcom, R. R. Gattass, C. B. Schaffer et al.. Numerical aperture dependence of damage and supercontinuum generation from femtosecond laser pulses in bulk fused silica[J]. J. Opt. Soc. Am. B, 2006, 23(11): 2317-2322.

[46] L. B. Glebov. Intrinsic laser-induced breakdown of silicate glasses[C]. SPIE, 2002, 4679: 321~331

[47] . B. Glebov, O. M. Efimov. Study of the characteristics of and mechanism of optical breakdown[J]. Bull. Acad. Sci. USSR Phys. Ser., 1985, 49: 94.

[48] O. M. Efimov, L. B. Glebov, V. S. Popikov et al.. Laser-induced damage of glasses by pulsed radiation in nano-picosecond region[C]. SPIE, 1996, 2770: 162~167

[49] . Q. Jia, H. X. Chen, M. Huang et al.. Ultraviolet-infrared femtosecond laser-induced damage in fused silica and CaF2 crystals[J]. Phys. Rev. B, 2006, 73(5): 054105.

[50] . Q. Jia, Z. Z. Xu, X. X. Li et al.. Microscopic mechanisms of ablation and micromachining of dielectrics by using femtosecond lasers[J]. Appl. Phys. Lett., 2003, 82(24): 4382-4384.

[51] Y. M. Oh, S. H. Lee, S. Park et al.. A numerical study on ultra-short pulse laser-induced damage on dielectrics using the Fokker-Planck equation[J]. Int. J. Heat Mass Transfer, 2006, 49(7~8): 1493~1500

[52] D. Ashkenasi, M. Lorenz, R. Stoian et al.. Surface damage threshold and structuring of dielectrics using femtosecond laser pulses: the role of incubation[J]. Appl. Surf. Sci., 1999, 150(1~4): 101~106

[53] J. Krüger, M. Lenzner, S. Martin et al.. Single- and multi-pulse femtosecond laser ablation of optical filter materials[J]. Appl. Surf. Sci., 2003, 208~209: 233~237

[54] X. C. Wang, G. C. Lim, H. Y. Zheng et al.. Femtosecond pulse laser ablation of sapphire in ambient air[J]. Appl. Surf. Sci., 2004, 228(1~4): 221~226

[55] . Krüger, W. Kautek. The femtosecond pulse laser: a new tool for micromachining[J]. Laser Phys., 1999, 9(1): 30-40.

[56] . D. Shirk, P. A. Molian. A review of ultrashort pulsed laser ablation of materials[J]. J. Laser Appl., 1998, 10(1): 18-28.

[57] L. Jiang, H. L. Tsai. Energy transport and material removal in wide bandgap materials by a femtosecond laser pulse[J]. Int. J. Heat Mass Transfer, 2005, 48(3~4): 487~499

[58] . Jiang, H. L. Tsai. Energy transport and nanostructuring of dielectrics by femtosecond laser pulse trains[J]. J. Heat Transfer, 2006, 128(9): 926-933.

[59] . M. Burakov, N. M. Bulgakova, R. Stoian et al.. Theoretical investigations of material modification using temporally shaped femtosecond laser pulses[J]. Appl. Phys. A, 2005, 81(8): 1639-1645.

姜澜, 李丽珊, Hai-Lung Tsai, 王素梅. 飞秒激光与宽禁带物质相互作用过程中光子-电子-声子之间的微能量传导 第二部分:相变过程[J]. 中国激光, 2009, 36(5): 1029. Lan Jiang, Lishan Li, Sumei Wang, Hai-Lung Tsai. Microscopic energy transport through photon-electron-phonon interactions during ultrashort laser ablation of wide bandgap materials Part Ⅱ: phase change[J]. Chinese Journal of Lasers, 2009, 36(5): 1029.

本文已被 2 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!