光谱学与光谱分析, 2013, 33 (12): 3282, 网络出版: 2014-01-09  

相山铀矿田碎斑熔岩岩石光谱与磁化率关系

Study of Relation between Crushed Lava Spectrum and Magnetic Susceptibility in Xiangshan Uranium Orefield
作者单位
1 东华理工大学放射性地质与勘探技术国防重点学科实验室, 江西 南昌 330013
2 东华理工大学地球科学学院, 江西 抚州 344000
3 东华理工大学江西省数字国土重点实验室, 江西 抚州 344000
摘要
探索岩石光谱与岩石其他物性之间的联系具有重要意义。 运用SVC HR-768便携式光谱仪对相山铀矿田内的36块5 cm×5 cm×5 cm大小的碎斑熔岩样品进行光谱测量, 每测量一个样品之前测量一次白板进行校正, 对测量后的光谱曲线进行5 nm的平滑重采样消除由大气水及其他外界环境变化所引起的噪声。 截取平滑重采样后1 112~1 322 nm范围的岩石光谱, 以波段值为横轴(X轴), 反射率为纵轴(Y轴)进行线性方程拟合, 求得各岩石样品在该光谱范围的直线方程。 以直线方程的斜率为横轴(X轴), 样品的体积磁化率为纵轴(Y轴)进行方程拟合, 得到y=-0.256 3 ln(x)+0.913 7, 相关系数高达0.78。 结果表明, 该岩石的体积磁化率主要由含Fe2+矿物引起; 1 112~1 322 nm范围光谱斜率能够半定量测定岩石中的Fe2+含量; 该范围的岩石光谱与体积磁化率具有较好的相关性。
Abstract
Rock spectrum research is the base of the remote sensing geology. It’s of great significance of exploring the relations between rock spectrum and other rock natures. In the present study, 36 fine crushed lava samples each measuring 5 cm×5 cm×5 cm were tested for its spectrums by SVC HR-768 portable spectrometer. But before measuring each sample, white boards should be calibrated and after measuring the curves of spectrum of each sample should make a 5 nm smooth resample so that meteoric water and noise caused by external environment can be eliminated. After such smooth resample, at the spectrum scope of 1 112~1 322 nm, taking band value as horizontal axis and reflectivity as vertical axis, linear equations of rock samples can be obtained. Taking the slopes as the horizontal axis and volume magnetic susceptibility as vertical axis, y=-0.256 3ln(x)+0.913 7 was thus obtained and its equation correlation coefficient is up to 0.78. The result shows that volume magnetic susceptibility is mainly caused by Fe2+, and that the amount of Fe2+ can be almost measured in the spectrum scope of 1 112~1 322 nm that has a good correlation with volume magnetic susceptibility.
参考文献

[1] ZHAO Ying-shi(赵英时). The Principal and Method of Analysis of Remote Sensing Application(遥感应用分析原理与方法). Beijing: Science Press(北京: 科学出版社), 2002.

[2] SU Yi-ming, LI Xiang-qian, ZHU Ye-fei(苏一鸣, 李向前, 朱叶飞). Jiangsu Geology(地质学刊), 2009, 33(1): 84.

[3] HAN Ling, BU Xiao-cui(韩玲, 卜晓翠). Remote Sensing Technology and Application(遥感技术与应用), 2007, 22(6): 696.

[4] YAO Fo-jun, ZHANG Yu-jun, YANG Jian-min, et al(姚佛军, 张玉君, 杨间民, 等). Mineral Deposits(矿床地质), 2012, 31(4): 881.

[5] BAO An-ming, WU Zhong-ying(包安明, 吴中莹). Arid Land Geography(干旱区地理), 1993, 16(3): 64.

[6] LI Jun-hua, WU Wei, HE Yan, et al(李军华, 吴炜, 何艳, 等). Spectroscopy and Spectral Analysis(光谱学与光谱分析), 2013, 33(1): 85.

[7] GUAN Zhi-ning(管志宁). Magnetic Field and Magnetic Exploration(地磁场与磁力勘探). Beijing: Geological Publishing Press(北京: 地质出版社), 2009.

[8] DENG Ru-ru, HE Ying-qing, QIN Yan(邓孺孺, 何颖清, 秦雁, 等). Journal of Remote Sensing(遥感学报), 2012, 16(1): 192.

[9] WAN Yu-qing, ZHANG Feng-yu, YAN Yong-zhong(万余庆, 张凤雨, 闫永忠). Geo-Information Science(地球信息科学), 2001, 3: 54.

[10] ZHANG Wan-liang(张万良). Geology in China(中国地质), 2005, 32(4): 548.

[11] ZHOU Xiao-hua, WANG Zhu-ning(周肖华, 王祝宁). Uranium Geology(铀矿地质), 2012, 28(2): 72.

[12] LIU Jian-ming, CHEN Jian-ping(刘建明, 陈建平). Advance in Earth Sciences(地球科学进展), 1995, 10(2): 205.

吴志春, 郭福生, 刘林清, 姜勇彪. 相山铀矿田碎斑熔岩岩石光谱与磁化率关系[J]. 光谱学与光谱分析, 2013, 33(12): 3282. WU Zhi-chun, GUO Fu-sheng, LIU Lin-qing, JIANG Yong-biao. Study of Relation between Crushed Lava Spectrum and Magnetic Susceptibility in Xiangshan Uranium Orefield[J]. Spectroscopy and Spectral Analysis, 2013, 33(12): 3282.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!