光谱学与光谱分析, 2020, 40 (6): 1988, 网络出版: 2020-12-08  

Synthesis and Spectroscopic Characterizations on the Complexation of Three Different Metal Ions Ba(Ⅱ), Ni(Ⅱ), and Ce(Ⅲ) with Atenolol Drug Chelate

Synthesis and Spectroscopic Characterizations on the Complexation of Three Different Metal Ions Ba(Ⅱ), Ni(Ⅱ), and Ce(Ⅲ) with Atenolol Drug Chelate
作者单位
1 Department of Chemistry, Faculty of Science, Taif University, Al-Haweiah, 21974, Taif, Saudi Arabia
2 Department of Chemistry, Faculty of Science, Zagazig University, Zagazig, Egypt
3 Department of Chemistry
4 Faculty of Science, Taif University, Al-Haweiah, 21974, Taif, Saudi Arabia
5 Faculty of Medicine, Umm Al Qura University, Mekkah, Saudi Arabia
6 Department of Chemistry, Faculty of Science, Port Said University, Port Said, Egypt
摘要
Abstract
Three types of metal ions barium(Ⅱ), nickel(Ⅱ) and cerium(Ⅲ) complexity of ATN drug have been prepared and characterized using molar conductance method, FT-IR, electronic, and 1H-NMR analysis measurements. The chemical and physical results for all atenolol complexes are agreement with the speculated structures. For the divalent (Ba & Ni) and trivalent (Ce) metal atenolol a molar ratio 1∶2 was established. Qualitative chemical analysis showed that for the divalent metal complexes, the chloride ions are not involved in the complexes, suggesting that all of these complexes, [Ba(ATN)2]·2H2O and [Ni(ATN)2(H2O)2]·4H2O are neutral. However, for the cerium(Ⅲ) complex, [Ce(ATN)2(NO3)]·3H2O, the nitrate group is existed inside the coordination sphere. ATN make astable metal complexity with barium(Ⅱ), nickel(Ⅱ) and cerium(Ⅲ) ions. Electronic absorption analysis of Atenolol give two fundamental peaks at 225 nm and 274 nm refers to variation in transition electrons of ligand, UV spectral analysis of the three complexity obtained give asymmetric broad band in the range 200~400 nm, the reults are convenient with the suggestion of metal-nitrogen and metal -oxygen bonds. The infrared analysis data proved that ATN act as bidentate ligand through the N atom of the -NH group and O atom of the deprotonated alcoholic OH group. Nickel(Ⅱ) and cerium(Ⅲ) complexity make six-coordinate geometry, whereas the barium(Ⅱ) complex exhibit four-coordinate geometry. Ni(Ⅱ)-ATN complex has an effective magnetic moment equal 3.12 B.M, that is assigned to octahedral structure. The 1H-NMR spectral results of Ba(Ⅱ)-ATN complexity give strong signal at ~4.00 ppm due to protons of -CH2 that influenced by low degree due to complexity. These results confirm the position of chelation through the N atom of the -NH group and O atom of the deprotonated alcoholic OH group.
参考文献

[1] El-Habeeb A A. Oriental J. Chem., 2014, 30(4): 1441.

[2] Farrel N P, Williamson J, Mclaren D J M. Biochem. Pharmacol., 1984, 33(7): 961.

[3] Cheung B C L, Tyler H T, Sun J M L, et al. Biochim. Biophys. Acta, 1998, 1414: 205.

[4] Mascini M, Bagni G, Pietro M L D, et al. BioMetals, 2006, 19: 409.

[5] Kostova I. Recent Pat Anti-Cancer Drug Discov., 2006, 1: 1.

[6] Guo Z, Sadler P J. Advances in Inorganic Chemistry, Vol. 49. San Diego: Academic Press, 2000. 183.

[7] Reynolds J E F, Ed. Martindale The Extra Pharmacopoeia, 31st ed. The Royal Pharmaceutical Society, London, Martindales Pharmacopeia, 1996.

[8] Dorr R T, Von-Hoff D D. Drug Monographs In: Cancer Chemotheraphy Hand Book, 2nd Edn., Norwalk, Connecticut: Appleton & Lange, 1994. 227; Perry M. The Chemotherapy Source Book, Bleomycin Sulfate Product Monograph. In: BC Cancer Agency, Cancer Drug Manual. Williams & Wilkins, Philadelphia, Lippinocott, 2002. 237.

[9] Chaterjee D, Mitra A, Dey G S. Platinum Metals Review, 2006, 50(1): 2.

[10] Kostova I. Platinum Complexity as Anticancer Agents Recent Patents on Anticancer drug Discovery, 2006, 1: 1.

[11] Rosenberg B, Van Camp L, Trosko J, et al. Nature, 1969, 222: 385.

[12] Divsalar A, Saboury A, Mansouri-Torshizi H, et al. Bull. Korean Chem. Soc., 2006, 27: 1801.

[13] Mansouri-Torshizi H, Moghaddam M I, Divsalar A, et al. Bioorg. Med. Chem., 2008, 16: 9616.

[14] Saeidfar M, Masouri-Torshizi H, Behbehani G, et al. Bull. Korean Chem. Soc., 2009, 30: 1951.

[15] Butour S, Wimmer F, Wimmer S, et al. Chem. Biolog. Inter., 1997, 104: 165.

[16] McKeage M J, Maharaj L, Berners-Price S J. Coord. Chem. Rev., 2002, 232: 127.

[17] Gromer S, Wissing J, Behne D, et al. Biochem. J., 1998, 332: 591.

[18] Butler A, Carrano C J. Coord. Chem. Rev., 1991, 109: 61.

[19] Hypertension Etiology. Hypertension statistics 2010: http://www.healthstats.com/en/hypertension-statistics.

[20] Bontchev P R, Kadum H, Evtimova B, et al. J. Inorg. Biochem., 1992, 48: 153.

[21] Pantcheva I, Bontchev P R, Nachev C. in: Ondrejovic G, Sirota A (Eds.), Progress in Coordination and Organometallic Chemistry, Slovac Technical University Press, Bratislava, 1997. 209.

[22] Bontchev P R, Pantcheva I, Ivanova B B, et al. Bulg. Chem. Commun., 1999, 31: 59.

[23] Bontchev P R, Ivanova B B, Bontchev R P, et al. Polyhedron, 2000, 19: 1843.

[24] Getova V, Mehandjiev D, Skumryev V, et al. J. University Chem. Technology and Metallurgy, 2006, 41(2): 193.

[25] The Merck Index: An Encyclopedia of Chemicals, Drugs, and Biologicals, Merck & Co., Whitehouse Station, NJ, USA, 11th Edition, 1989.

[26] Hegde R N, Kumara Swamy B E, Sherigara B S, et al. Int. J. Electrochem. Sci., 2008, 3(3): 302.

[27] Indian Pharmacopoeia, Ministry of Health and Family Welfare, Government of India, New Delhi, India, 4th Edition, 1996.

[28] British Pharmacopoeia, Vol. I, Her Majesty’s Stationary Office, London, UK, 1988.

[29] Gotardo M A, Sequinel R, Pezza L, et al. Ecletica Quimica, 2008, 33(4): 7.

[30] Rao D D, Satyanarayana N V, Sait S S, et al. Chromatographia, 2009, 70(3-4): 647.

[31] Azzam K A, Elbashir A A, Elbashir M A, et al. Analyt. Lett., 2009, 42(10): 1458.

[32] Shamsipur M, Jalali F, Haghgoo S. Analyt. Lett., 2005, 38(3): 401.

[33] Yu L L, Liu J C, Li H K. Yaowu Fenxi Zazhi, 2010, 32-30(3): 538.

[34] Bashir N, Shah S W H, Bangesh M, et al. J. Sci. Industrial Res., 2011, 70(1): 51.

[35] Basavaiah K, Chandrashekar U, Nagegowda P. J. Serb. Chem. Soc., 2006, 71(5): 553.

[36] Bontchev P R, Pantcheva I N, Gochev G P. Trans. Met. Chem., 2000, 25: 196.

[37] Bontchev P R, Pantcheva I N. Trans. Met. Chem., 2002, 27: 1.

[38] Golcu A, Yucesoy C, Serin S. Syn. React. Inorg. Met.-Org. Chem., 2004, 34(7): 1259.

[39] Cozar I O, Szabo L, Cozar I B, et al. J. Mol. Struct., 2011, 993: 357.

[40] Glcü A, Yavuz P. Russ. J. Coord. Chem., 2008, 34(2): 106.

[41] Ahmed M, Jamadar N, Shetty A S. Acta Chim. Pharm. Indica, 2012, 2(3): 134.

[42] Wilkinson G W. Comprehensive Coordination Chemistry; Pergamon Press: Oxford, 1987; Khamis M W, Abbas B F, Abd-Al-Sada S H, et al. J. Engineering and Applied Sciences, 2019, 14(3): 734.

[43] Esteves de Castro R A, Canotilho J, Barbosa R M, et al. Cryst. Growth Des., 2007, 7: 496.

[44] Picquart M, Grajcar L, Baron M H, et al. Biospectroscopy, 1999, 5: 328.

[45] Cozar O, Szabo L, Cozar I B, et al. J. Mol. Struct., 2011, 993: 357.

[46] Glcü A, Yavuz P. Russ. J. Coord. Chem., 2008, 34(2): 106.

[47] Bontchev P R, Pantcheva I N. Trans. Met. Chem., 2002, 27: 1.

[48] Bontchev P R, Pantcheva I N, Gochev G P. Trans. Met. Chem., 2000, 25: 196.

[49] Seema, Monika Datta. Eur. Chem. Bull., 2013, 2(11): 942.

[50] Bontchev P R, Kadum H, Evtimova B, et al. J. Inorg. Biochem., 1992, 48: 153.

[51] Pavia D L, Lampman G M, Kriz G S. Introduction to Spectroscopy, 3rd ed., Harcourt College, Orlando, USA, 2001. 54; Abass S, Al-kahdimy H, Al-Amiery A A H, et al. J. Chem. Pharm. Res., 2010, 2(3): 394.

[52] Demir S, Yilmaz V T, Sariboga B, et al. J. Inorg. Organomet. Polym., 2010, 20: 220.

[53] Nakamoto K. Infrared and Raman Spectra of Inorganic and Coordination Compounds, Wiley and Sons, New York, 1978.

[54] Lever A B P. Inorganic Electronic Spectroscopy; Elsevier: Amsterdam, The Netherlands, 1986. 385.

[55] Tsuchimoto M, Hoshina G, Yoshioka N, et al. J. Solid State Chem., 2000, 153: 9.

[56] Earnshaw A. The Introduction to Magnetochemistry, Academic Press, London, 1980. 80.

[57] Sacconi L. Electronic Structure and Stereochemistry of Ni(Ⅱ), in: Carlin R L(Ed.). Transition Metal Chemistry: a Series of Advances, 1968, 4: 199.

Samy M El-Megharbel, Tariq Altalhi, Abdullah Ayad Salem Alruqi, Moamen S Refat. Synthesis and Spectroscopic Characterizations on the Complexation of Three Different Metal Ions Ba(Ⅱ), Ni(Ⅱ), and Ce(Ⅲ) with Atenolol Drug Chelate[J]. 光谱学与光谱分析, 2020, 40(6): 1988. Samy M EI-Megharbel, Tariq Altalhi, Abdullah Ayad Salem Alruqi, Moamen S Refat. Synthesis and Spectroscopic Characterizations on the Complexation of Three Different Metal Ions Ba(Ⅱ), Ni(Ⅱ), and Ce(Ⅲ) with Atenolol Drug Chelate[J]. Spectroscopy and Spectral Analysis, 2020, 40(6): 1988.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!