光学与光电技术, 2017, 15 (3): 74, 网络出版: 2017-07-10  

大口径红外热像仪热敏性电气补偿技术研究

Heat-Sensitive of Large Aperture Infrared Thermal Imager Electrical Compensation Research
作者单位
华中光电技术研究所—武汉光电国家实验室, 湖北 武汉 430223
摘要
在红外热像仪的外场应用中,温度变化会对热像仪的光学系统特性产生影响,导致光学系统产生离焦,造成图像模糊,影响成像质量。针对这一问题,提出了机电式无热技术,利用移动透镜进行主动补偿,以消除或降低温度变化对图像质量造成的影响。基于实验数据研究了温度变化对热像仪焦距的影响,得到温度对焦距变化影响的规律。基于分析结果,得到不同温度下调焦电机补偿码值,并增加了温度测量接口,设计了自动补偿软逻辑控制软件。最后,在红外热像仪上进行了实物实验验证,验证实验结果表明,该方法可使长时间工作的红外热像仪图像一直保持基本状态。提出的机电式主动补偿方法避免了光学系统重新设计,具有较好的实践性和经济性。
Abstract
In practical field application, temperature variance has obvious influence on optical systems of infrared thermal imager. This problem will cause un-focusing effect in optical system, and lead blurring problem in IR images. For this problem, a motorized athermalizing technology is indicated in this paper. Lens is moved to compensate the un-focusing effect caused by temperature variance. Based on the experimental analysis of temperature change on focal length, the law between temperature and focal length is obtained. From the analysis results, the motor compensation code under different temperature is derived. After that, a temperature measurement interface is designed, and the auto compensation logical control software is realized. Finally, this method is verified in practical IR imager. The verification test shows that, this method can keep the IR image in clear level during long term operation. This active compensation method shows good practicability and cost-efficient, while it avoids re-designing the optical system.
参考文献

[1] 杨为锦, 孙强. 中波红外连续变焦系统设计[J]. 中国光学与应用光学, 2010, 3(2): 164-169.

    YANG ei-jin, SUN Qiang. Design of middle infrared continuous zoom system[J]. Chinese J. OPT. Appl. Opt., 2010, 3(2): 164-169.

[2] 张红鑫, 卢振武, 孙强, 等. 折/衍混合长波红外凝视成像系统的杂散光分析[J]. 中国光学与应用光学, 2009, 2(5): 402-407.

    ZHANG Hong-xin, LU Zhen-wu, SUN Qiang, et al. Stray light analysis of diffractive/refractive LWIR string imaging system[J]. Chinese J. OPT. Appl. Opt., 2009, 2(5): 402-407.

[3] 胡玉禧, 周绍祥, 相里斌. 消热差光学系统设计[J]. 光学学报, 2000, 20(10): 1386-1391.

    HU Yu-xi, ZHOU Shao-xiang, XIANG Li-bin. Design of athermal optical system[J]. Acta Opt. Sinica., 2000, 20(10): 1386-1391.

[4] 张鑫, 贾宏光. 大相对孔径红外消热差物镜设计[J]. 中国光学, 2011, 8(4): 374-379.

    ZHANG Xin, JIA Hong-guang. Optical design of infrared athermalized objective with large relative aperture[J]. Chinese Optics, 2011, 8(4): 374-379.

[5] 吴晓靖, 孟军和. 使用简单机械结构实现红外光学系统无热化[J]. 红外与激光工程, 2005, 8(34): 391-393.

    WU Xiao-jing, MENG Jun-he. A athermalizing infrared optical systems by using simple mechanical framework[J]. Infrared and Laser Engineering, 2005, 8(34): 391-393.

[6] 沈宏海, 王国华, 等. 主动补偿无热化技术在机载红外光学系统中的应用[J]. 光学 精密工程, 2010, 3(18): 593-600.

    SHEN Hong-hai, WANG Guo-hua, et al. Application of active-athermal compensation to airborne IR optical systems[J]. Optical and Precision Engineering, 2010, 3(18): 593-600.

[7] 孟庆超, 潘国庆, 张运强, 等. 红外光学系统的无热化设计[J]. 红外与激光工程, 2008, 6(37): 723-727.

    MENG Qing-chao, PAN Guo-qing, ZHANG Yun-qiang, et al. Design of athermalizing infrared optical system[J]. Infrared and Laser Engineering, 2008, 6(37): 723-727.

[8] 李升辉, 杨长城. 折/衍混合红外光学系统的消热差设计[J]. 光学与光电技术, 2006, 4(4): 1-3.

    LI Sheng-hui, YANG Chang-cheng. Athermal Design for Infrared Hybrid Refractive/Diffractive Optical System[J]. Optics & Optoelectronic Technology, 2006, 4(4): 1-3.

[9] 刘琳, 沈为民, 周建康. 中波红外相对孔径消热差光学系统的设计[J]. 中国激光, 2010, 5(37): 675-679.

    LIU Lin, SHEN Wei-min, ZHOU Jian-kang. A Design on Athermalised Middle Wavelength Infrared Optical System with Large Relative Aperture[J]. Chinese Journal of Lasers, 2010, 5(37): 675-679.

李哲, 贾国伟, 赵思聪, 叶小风. 大口径红外热像仪热敏性电气补偿技术研究[J]. 光学与光电技术, 2017, 15(3): 74. LI Zhe, JIA Guo-wei, ZHAO Si-cong, YE Xiao-feng. Heat-Sensitive of Large Aperture Infrared Thermal Imager Electrical Compensation Research[J]. OPTICS & OPTOELECTRONIC TECHNOLOGY, 2017, 15(3): 74.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!