光谱学与光谱分析, 2017, 37 (9): 2685, 网络出版: 2017-10-16  

针对SHS探测仪的中高层OH自由基临边观测仿真研究

Simulation of Limb Measurements for Mesospheric Hydroxyl Radical Based on SHS Detector
张洪海 1,2,3,*高一博 1,2,3李超 1,2,3麻金继 1,2,3方雪静 4熊伟 4
作者单位
1 安徽师范大学国土资源与旅游学院, 安徽 芜湖 241000
2 资源环境与地理信息工程安徽省工程技术研究中心, 安徽 芜湖 241003
3 安徽师范大学自然灾害过程与防控研究重点实验室, 安徽 芜湖 241000
4 中国科学院安徽光学精密机械研究所, 安徽 合肥 230031
摘要
大气OH自由基是大气中各组分光化学反应的重要媒介, 对大气其他成分的形成和转化起重要作用。 利用MLS传感器2005年—2009年的OH全球浓度数据产品构建OH浓度时空数据库和Lifbase光谱分析软件构建OH发射光谱数据库, 改进了SCIATRAN辐射传输模型, 计算了基于空间外差光谱(SHS)技术的探测仪的临边探测仿真图像, 并提取了大气OH自由基荧光发射在观测能量中的贡献。 基于辐射传输理论, 通过定量计算分析了仿真过程中各个参量不确定度对仿真结果和OH荧光能量的定量影响。 该研究结果不仅能为我国构建中高层OH自由基探测仪提供科学理论支撑, 还能为探测仪器相关参数设计提供依据。
Abstract
OH radicals in atmosphere, an important mediator of the photochemical reactions between various atmospheric compositions, play a key role in the formation and transformation of other atmospheric components. Based on the OH concentration spatiotemporal database constructed by MLS global observation results of OH, and the OH emission spectra database from Lifbase, SCIATRAN was modified according to the radiation transmission theory. The simulated image of spatial heterodyne spectrum (SHS) detector was obtained in the state of limb scanning and the contribution of atmospheric OH radical fluorescence emission in observing energy was extracted. Based on the radiation transmission theory, the quantitative influence of the uncertainty of each parameter in the simulation process was analyzed quantitatively. The results can not only provide scientific theoretical supports for the construction of detector for mesospheric OH radical, but also provide the basis for the design of relevant parameters of detector.
参考文献

[1] Stevens M, Englert C, Grossmann K, et al. MAHRSI and CRISTA Observations of the Arctic Summer Mesosphere. AIAA Space 2001 Conference and Exposition, 2001.

[2] Englert C R, Stevens M H, Siskind D E, et al. Journal of Geophysical Research Atmospheres, 2010, 115(D20): 898.

[3] Shuhui W, King-Fai L, Pongetti T J, et al. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(6): 2023.

[4] NSO/Kitt Peak FTS Data Used Here were Produced by NSF/NOAO.

[5] PENG Zhi-min, DING Yan-jun, YANG Qian-suo, et al(彭志敏, 丁艳军, 杨乾锁, 等). Acta Phys. Sin.(物理学报), 2011, 4(5): 250.

[6] Luque J, Crosley D R, Luque J, et al. LIFbase: Database and Spectral Simulation, 1996.

[7] Piasecki B, Fletcher K. Journal of Physics D Applied Physics, 2010, 43(12): 364.

[8] LU Xiao-hui, SUN Ming, HAO Xia-tong, et al(鲁晓辉, 孙 明, 郝夏桐, 等). Journal of Shanghai Maritime University(上海海事大学学报), 2014, (4): 89.

[9] Hortal Mariano, Simmons A J. Monthly Weather Review, 1991, 119(4): 1057.

[10] ZHANG Hong-hai, LI Chao, GAO Yi-bo, et al(张洪海, 李 超, 高一博, 等). Journal of Atmospheric and Environmental Optics(大气与环境光学学报), 2017. 4.

[11] LUO Hai-yan, LI Shuang, SHI Hai-liang, et al(罗海燕, 李 双, 施海亮, 等). Infrared & Laser Engineering(红外与激光工程), 2016, 45(8): 0818005.

[12] Perkins C P, Kerekes J P, Cartley M G. Proc. SPIE, 2013, 8870(5755): 88700k-14.

[13] Degenstein D A, Bourassa A E, Roth C Z, et al. Atmospheric Chemistry & Physics, 2008, 8(3): 6521.

[14] Stevens M H, Conway R R. Calculated OH A. Journal of Geophysical Research Atmospheres, 1999, 1041(D13): 16369.

[15] GAO Hong, XU Ji-yao, CHEN Guang-ming, et al(高 红, 徐寄遥, 陈光明, 等). Chinese Journal of Space Science(空间科学学报), 2009, 29(3): 304.

张洪海, 高一博, 李超, 麻金继, 方雪静, 熊伟. 针对SHS探测仪的中高层OH自由基临边观测仿真研究[J]. 光谱学与光谱分析, 2017, 37(9): 2685. ZHANG Hong-hai, GAO Yi-bo, LI Chao, MA Jin-ji, FANG Xue-jing, XIONG Wei. Simulation of Limb Measurements for Mesospheric Hydroxyl Radical Based on SHS Detector[J]. Spectroscopy and Spectral Analysis, 2017, 37(9): 2685.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!