Frontiers of Optoelectronics, 2017, 10 (4): 388, 网络出版: 2018-01-17  

Waveform LiDAR signal denoising based on connected domains

Waveform LiDAR signal denoising based on connected domains
作者单位
National Key Laboratory of Science and Technology on Tunable Laser, Harbin Institute of Technology, Harbin 150001, China
摘要
Abstract
The streak tube imaging light detection and ranging (LiDAR) is a new type of waveform sampling laser imaging radar whose echo signals are stripe images with a high frame rate. In this study, the morphological and statistical characteristics of stripe signals are analyzed in detail. Based on the concept of mathematical morphology denoising, connected domains are constructed in a noisecontaining stripe image, and the noise is removed using the difference in connected domains area between signals and noises. It is shown that, for stripe signals, the proposed denoising method is significantly more efficient than Wiener filtering.
参考文献

[1] Li Q, Wang Y, Wang Q, Li Z. Noise suppression algorithm of coherent ladar range image. Acta Optica Sinica, 2005, 25(05): 581- 584

[2] Li Q, Wang Q, Li Z, Li L, Jiang L. Image processing on laser imaging radar. Chinese Journal of Lasers, 2002, A29(09): 826-828

[3] Gleckler A D, Gelbart A, Bowden J M. Multispectral and hyperspectral 3D imaging Lidar based upon the multipleslit streak tube imaging lidar. Proceedings of the Society for Photo- Instrumentation Engineers, 2001, 4377: 328-335

[4] Gleckler A D, Gelbart A. Three-dimensional imaging polarimetry. Proceedings of the Society for Photo-Instrumentation Engineers, 2001, 4377: 175-185

[5] Nevis A J. Automated processing for streak tube imaging lidar data. Proceedings of the Society for Photo-Instrumentation Engineers, 2003, 5089: 119-129

[6] Gelbart A, Redman B C, Light R S, Schwartzlow C A, Griffis A J. Flash lidar based on multiple-slit streak tube imaging lidar. Proceedings of the Society for Photo-Instrumentation Engineers, 2002, 4723: 9-18

[7] Sun J F, Liu D, Ge M D, Wang Q. Image pre-processing algorithm of underwater target for streak tube imaging lidar. Chinese Journal of Lasers, 2013, 40(07): 211-214

[8] Sheng Y P, Sun J F, Xu D W. Application analysis of short-range ocean surface monitoring for streak tube imaging lidar. Electro- Optic Technology Application, 2012, (1): 34-36,70

[9] un J F, Gao J, Wei J S, Wang Q. Research development of underwater detection imaging based on streak tube imaging lidar. Infrared and Laser Engineering, 2010, 39(05): 811-814

[10] Li S N, Liu J B, Guang Y H, Zang J H, Wang Q. Maximum acquisition range calculation for multi-wavelength streak tube image lidar. Acta Photonica Sinica, 2007, 36(S1): 106-109

[11] Wei J S, Wang Q, Sun J F, Gao J. Experiment of four-dimensional imaging with single-slit streak tube lidar. Chinese Journal of Lasers, 2010, 37(5): 1231-1235

[12] Zhang J H, Li S N, Wang Q, Liu J B. Noise analyzing and processing of streak image for streak tube imaging lidar. Acta Photonica Sinica, 2008, 37(8): 1533-1538

[13] Dong Z W, Zhang R H, Zhang W B. Noise features in streak tube lidar echo signal. Acta Optica Sinica, 2016, 36(09): 296-300

[14] Dong Z W, Zhang W B, Fan R W. Streak tube principle lidar imaging simulation and experiment Infrared and Laser Engineering. Infrared and Laser Engineering, 2016, 45(07): 100-104

[15] Gleckler A. Streak tube imaging lidar for electro-optic identification. In: Proceedings of 4th International Symposium on Technology and the Mine Problem, 2001

[16] Redman B C, Griffis A J, Schibley E B. Streak tube imaging lidar (STIL) for 3-D imaging of terrestrial targets. In: Proceedings of the MSS Specialty Group on Active E-O Systems, 2000

[17] Bian X D. Research on stripe image processing for threedimensional laser mapping. Dissertation for the Master Degree. Harbin: Harbin Institute of Technology, 2015, 20-21

[18] Lim J S. Two-Dimensional Signal and Image Processing. Englewood Cliffs, NJ: Prentice Hall, 1990

[19] Fan J M. Design and application of the labeling algorithm of 8- adjacent connecting area for massive gray scale images. Dissertation for the Master Degree. Kaifeng: Henan University, 2015

[20] Suzuki K, Horiba I, Sugie N. Linear-time connected-component labeling based on sequential local operations. Computer Vision and Image Understanding, 2003, 89(1): 1-23

Liyu SUN, Zhiwei DONG, Ruihuan ZHANG, Rongwei FAN, Deying CHEN. Waveform LiDAR signal denoising based on connected domains[J]. Frontiers of Optoelectronics, 2017, 10(4): 388. Liyu SUN, Zhiwei DONG, Ruihuan ZHANG, Rongwei FAN, Deying CHEN. Waveform LiDAR signal denoising based on connected domains[J]. Frontiers of Optoelectronics, 2017, 10(4): 388.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!