光学学报, 2016, 36 (10): 1011003, 网络出版: 2016-10-12   

基于光学相干层析成像的视网膜图像自动分层方法 下载: 748次

Automated Retinal Layer Segmentation Based on Optical Coherence Tomographic Images
贺琪欲 1,2,*李中梁 1,2王向朝 1,2南楠 1卢宇 1,2
作者单位
1 中国科学院上海光学精密机械研究所信息光学与光电技术实验室, 上海 201800
2 中国科学院大学, 北京 100049
摘要
利用光学相干层析成像(OCT)获得视网膜图像并对其进行分层,进而获得各视网膜层的厚度,在许多眼科疾病的临床诊断中具有重要作用。高散斑噪声、低图像对比度、存在血管等复杂结构等因素使得对视网膜的精确分层难以实现。提出了一种视网膜OCT图像的自动分层方法,利用三维块匹配和均值滤波去噪对图像进行预处理,分两步对视网膜图像分层,在每个A扫描上设置可变阈值进行逐层分割作为初步分层结果,然后对各层的初步分层结果进行连续性和完整性判断和修正。对健康和患病视网膜的OCT图像进行分层以验证提出方法的有效性。实验结果显示该方法能够精确地分出9层视网膜层,平均层边界位置偏差为(1.34±0.24) pixel。该方法能够适应噪声高、对比度低的图像,对存在血管等复杂结构的图像同样能够实现较好的分层。
Abstract
Segmentation of retinal images obtained by optical coherence tomography (OCT) and retinal thickness measurement has become an important clinical diagnostic tool for many diseases in ophthalmology. However, such factors as speckle noise, low image contrast, and irregularly shaped structural features including blood vessels make it difficult to segment retinal layers accurately. An automated retinal layer segmentation method is proposed by employing block-matching and 3D filtering along with mean filtering for preprocessing and a two-step optimal search. The two-step optimal search begins with individual retinal layer segmentation by setting a variable threshold on each A-scan as initial results, which are then checked and corrected for continuity and integrity. The performance of the proposed method is tested on a set of OCT retinal images acquired from healthy people and patients. The experimental results show that the proposed method provides accurate segmentation of nine retinal layers whose mean boundary position deviation is (1.34±0.24) pixel. The method can be applied to OCT images affected by speckle noise, low image contrast, and even irregularly shaped structural features such as blood vessels.
参考文献

[1] Mishra A, Wong A, Bizheva K, et al. Intra-retinal layer segmentation in optical coherence tomography images[J]. Optics Express, 2009, 17(26): 23719-23728.

[2] 胡志雄, 郝冰涛, 刘文丽, 等. 用于光学相干层析成像设备点扩散函数测量的模体制作与使用方法研究[J]. 光学学报, 2015, 35(4): 0417001.

    Hu Zhixiong, Hao Bingtao, Liu Wenli, et al. Research on point spread function phantom fabrication and application for evaluating resolution performance of OCT systems[J]. Acta Optica Sinica, 2015, 35(4): 0417001.

[3] 郭昕, 王向朝, 步鹏, 等. 样品散射对频域光学相干层析成像光谱形状和深度分辨率的影响[J]. 光学学报, 2014, 34(1): 0117001.

    Guo Xin, Wang Xiangzhao, Bu Peng, et al. Effects of scattering on spectral shape and depth resolution in Fourier domain optical coherence tomography[J]. Acta Optica Sinica, 2014, 34(1): 0117001.

[4] Chiu S J, Li X T, Nicholas P, et al. Automatic segmentation of seven retinal layers in SDOCT images congruent with expert manual segmentation[J]. Optics Express, 2010, 18(18): 19413-19428.

[5] Shi F, Chen X, Zhao H, et al. Automated 3-D retinal layer segmentation of macular optical coherence tomography images with serous pigment epithelial detachments[J]. IEEE Transactions on Medical Imaging, 2015, 34(2): 441-452.

[6] Ishikawa H, Piette S, Liebmann J M, et al. Detecting the inner and outer borders of the retinal nerve fiber layer using optical coherence tomography[J]. Graefe′s Archive for Clinical and Experimental Ophthalmology, 2002, 240(5): 362-371.

[7] Cha Y M, Han J H. High-accuracy retinal layer segmentation for optical coherence tomography using tracking kernels based on Gaussian mixture model[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2014, 20(2): 6801010.

[8] Gtzinger E, Pircher M, Baumann B, et al. Speckle noise reduction in high speed polarization sensitive spectral domain optical coherence tomography[J]. Optics Express, 2011, 19(15): 14568-14584.

[9] Fercher A F, Hitzenberger C K, Kamp G, et al. Measurement of intraocular distances by backscattering spectral interferometry[J]. Optics Communications, 1995, 117(1): 43-48.

[10] Schmitt J M, Xiang S H, Yung K M. Speckle in optical coherence tomography[J]. Journal of Biomedical Optics, 1999, 4(1): 95-105.

[11] Fernández D C, Salinas H M, Puliafito C A. Automated detection of retinal layer structures on optical coherence tomography images[J]. Optics Express, 2005, 13(25): 10200-10216.

[12] Ishikawa H, Stein D M, Wollstein G, et al. Macular segmentation with optical coherence tomography[J]. Investigative Ophthalmology & Visual Science, 2005, 46(6): 2012-2017.

[13] Ahlers C, Simader C, Geitzenauer W, et al. Automatic segmentation in three-dimensional analysis of fibrovascular pigment epithelial detachment using high-definition optical coherence tomography[J]. British Journal of Ophthalmology, 2008, 92(2): 197-203.

[14] Fabritius T, Makita S, Miura M, et al. Automated segmentation of the macula by optical coherence tomography[J]. Optics Express, 2009, 17(18): 15659-15669.

[15] Mujat M, Chan R C, Cense B, et al. Retinal nerve fiber layer thickness map determined from optical coherence tomography images[J]. Optics Express, 2005, 13(23): 9480-9491.

[16] Yazdanpanah A, Hamarneh G, Smith B, et al. Intra-retinal layer segmentation in optical coherence tomography using an active contour approach[C]. International Conference on Medical Image Computing and Computer-Assisted Intervention, 2009: 649-656.

[17] Yazdanpanah A, Hamarneh G, Smith B R, et al. Segmentation of intra-retinal layers from optical coherence tomography images using an active contour approach[J]. IEEE Transactions on Medical Imaging, 2011, 30(2): 484-496.

[18] Garvin M K, Abramoff M D, Wu X, et al. Automated 3-D intraretinal layer segmentation of macular spectral-domain optical coherence tomography images[J]. IEEE Transactions on Medical Imaging, 2009, 28(9): 1436-1447.

[19] Yang Q, Reisman C A, Wang Z, et al. Automated layer segmentation of macular OCT images using dual-scale gradient information[J]. Optics Express, 2010, 18(20): 21293-21307.

[20] Fuller A R, Zawadzki R J, Choi S, et al. Segmentation of three-dimensional retinal image data[J]. IEEE Transactions on Visualization and Computer Graphics, 2007, 13(6): 1719-1726.

[21] Gtzinger E, Pircher M, Geitzenauer W, et al. Retinal pigment epithelium segmentation by polarization sensitive optical coherence tomography[J]. Optics Express, 2008, 16(21): 16410-16422.

[22] Hee M R, Swanson E A, Fujimoto J G, et al. Polarization-sensitive low-coherence reflectometer for birefringence characterization and ranging[J]. Journal of the Optical Society of America B, 1992, 9(6): 903-908.

[23] Wang L, Meng Z, Yao X S, et al. Adaptive speckle reduction in OCT volume data based on block-matching and 3-D filtering[J]. IEEE Photonics Technology Letters, 2012, 24(20): 1802-1804.

[24] Dabov K, Foi A, Katkovnik V, et al. Image denoising by sparse 3-D transform-domain collaborative filtering[J]. IEEE Transactions on Image Processing, 2007, 16(8): 2080-2095.

[25] Niu S, Chen Q, de Sisternes L, et al. Automated retinal layers segmentation in SD-OCT images using dual-gradient and spatial correlation smoothness constraint[J]. Computers in Biology Medicine, 2014, 54: 116-128.

贺琪欲, 李中梁, 王向朝, 南楠, 卢宇. 基于光学相干层析成像的视网膜图像自动分层方法[J]. 光学学报, 2016, 36(10): 1011003. He Qiyu, Li Zhongliang, Wang Xiangzhao, Nan Nan, Lu Yu. Automated Retinal Layer Segmentation Based on Optical Coherence Tomographic Images[J]. Acta Optica Sinica, 2016, 36(10): 1011003.

本文已被 15 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!