Frontiers of Optoelectronics, 2016, 9 (1): 87, 网络出版: 2016-10-21  

Green light-emitting diode based on graphene-ZnO nanowire van der Waals heterostructure

Green light-emitting diode based on graphene-ZnO nanowire van der Waals heterostructure
作者单位
1 College of Microelectronics, College of Information Science and Electronic Engineering, Zhejiang University, Hangzhou 310027, China
2 State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering,
3 State Key Laboratory of Modern Optical Instrumentation, Zhejiang University, Hangzhou 310027, China
摘要
The rectifying behavior between graphene and semiconductors makes novel type of solar cells, photodetectors and light emitting diodes (LEDs). The interface between graphene and ZnO is the key for the performance of the optoelectronic devices. Herein, we find that green light emission is very strong for the forward biased graphene/ZnO nanowire van derWaals heterostructure.We correlated the green light emission with the surface defects locating at the ZnO nanowire surface through the detailed high resolution transmission electron microscopy and photoluminescence measurements. We pointed out engineering the surface of ZnO nanowires could bring a dimension of designing graphene/ZnO LEDs, which could be extended to other types of graphene/semiconductor heterostructure based optoelectronic devices.
Abstract
The rectifying behavior between graphene and semiconductors makes novel type of solar cells, photodetectors and light emitting diodes (LEDs). The interface between graphene and ZnO is the key for the performance of the optoelectronic devices. Herein, we find that green light emission is very strong for the forward biased graphene/ZnO nanowire van derWaals heterostructure.We correlated the green light emission with the surface defects locating at the ZnO nanowire surface through the detailed high resolution transmission electron microscopy and photoluminescence measurements. We pointed out engineering the surface of ZnO nanowires could bring a dimension of designing graphene/ZnO LEDs, which could be extended to other types of graphene/semiconductor heterostructure based optoelectronic devices.
参考文献

[1] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A. Electric field effect in atomically thin carbon films. Science, 2004, 306(5696): 666–669

[2] Zhu Y, Murali S, Cai W, Li X, Suk J W, Potts J R, Ruoff R S. Graphene and graphene oxide: synthesis, properties, and applications. Advanced Materials, 2010, 22(35): 3906–3924

[3] Geim A K, Novoselov K S. The rise of graphene. Nature Materials, 2007, 6(3): 183–191

[4] Li X, Chen W, Zhang S, Wu Z, Wang P, Xu Z, Chen H, Yin W, Zhong H, Lin S. 6.5% efficient graphene/GaAs van der Waals heterostructure solar cell. Nano Energy, 2015, 16: 310–319

[5] Li X, Zhu H, Wang K, Cao A, Wei J, Li C, Jia Y, Li Z, Li X, Wu D. Graphene-on-silicon Schottky junction solar cells. Advanced Materials, 2010, 22(25): 2743–2748

[6] Liu Y, Wang F, Wang X, Wang X, Flahaut E, Liu X, Li Y, Wang X, Xu Y, Shi Y, Zhang R. Planar carbon nanotube-graphene hybrid films for high-performance broadband photodetectors. Nature Communications, 2015, 6: 8589

[7] Liu X, Ji X, Liu M, Liu N, Tao Z, Dai Q, Wei L, Li C, Zhang X, Wang B. High-performance Ge quantum dot decorated graphene/ zinc-oxide heterostructure infrared photodetector. ACS Applied Materials & Interfaces, 2015, 7(4): 2452–2458

[8] Shelke N T, Karche B R. Hydrothermal synthesis of WS2/RGO sheet and their application in UV photodetector. Journal of Alloys and Compounds, 2015, 653: 298–303

[9] Chang C W, Tan W C, Lu M L, Pan T C, Yang Y J, Chen Y F. Graphene/SiO2/p-GaN diodes: an advanced economical alternative for electrically tunable light emitters. Advanced Functional Materials, 2013, 23(32): 4043–4048

[10] Nakamura S, Mukai T, Senoh M. Candela-class high-brightness InGaN/AlGaN double-heterostructure blue-light-emitting diodes. Applied Physics Letters, 1994, 64(13): 1687

[11] Ohshima E, Ogino H, Niikura I, Maeda K, Sato M, Ito M, Fukuda T. Growth of the 2-in-size bulk ZnO single crystals by the hydrothermal method. Journal of Crystal Growth, 2004, 260(1–2): 166–170

[12] Sun X W, Kwok H S. Optical properties of epitaxially grown zinc oxide films on sapphire by pulsed laser deposition. Journal of Applied Physics, 1999, 86(1): 408

[13] Lin S S. Robust low resistivity p-type ZnO:Na films after ultraviolet illumination: the elimination of grain boundaries. Applied Physics Letters, 2012, 101(12): 122109

[14] Ye Y, Gan L, Dai L, Meng H, Wei F, Dai Y, Shi Z, Yu B, Guo X, Qin G. Multicolor graphene nanoribbon/semiconductor nanowire heterojunction light-emitting diodes. Journal of Materials Chemistry, 2011, 21(32): 11760–11763

[15] Nam G H, Baek S H, Park I K. Growth of ZnO nanorods on graphite substrate and its application for Schottky diode. Journal of Alloys and Compounds, 2014, 613: 37–41

[16] Yang J, Zhao X, Shan X, Fan H, Yang L, Zhang Y, Li X. Blue-shift of UV emission in ZnO/graphene composites. Journal of Alloys and Compounds, 2013, 556: 1–5

[17] Lin S, Ye Z, He H, Zeng Y J, Tang H, Zhao B, Zhu L. Catalyst-free synthesis of vertically aligned screw-shape InZnO nanorods array. Journal of Crystal Growth, 2007, 306(2): 339–343

[18] Lin S S, Hong J I, Song J H, Zhu Y, He H P, Xu Z,Wei Y G, Ding Y, Snyder R L, Wang Z L. Phosphorus doped Zn1-xMgxO nanowire arrays. Nano Letters, 2009, 9(11): 3877–3882

[19] Pan Z W, Dai Z R, Wang Z L. Nanobelts of semiconducting oxides. Science, 2001, 291(5510): 1947–1949

[20] Lin S S, Chen B G, Pan C T, Hu S, Tian P, Tong LM. Unintentional doping induced splitting of G peak in bilayer graphene. Applied Physics Letters, 2011, 99(23): 233110

[21] Lin S, Ye Z, He H, Zhao B, Zhu L, Huang J. Photoluminescence properties of ZnO nanoneedles grown by metal organic chemical vapor deposition. Journal of Applied Physics, 2008, 104(6): 064311

[22] Rasool H I, Song E B, AllenMJ,Wassei J K, Kaner R B,Wang K L, Weiller B H, Gimzewski J K. Continuity of graphene on polycrystalline copper. Nano Letters, 2011, 11(1): 251–256

[23] Das A, Pisana S, Chakraborty B, Piscanec S, Saha S K, Waghmare U V, Novoselov K S, Krishnamurthy H R, Geim A K, Ferrari A C, Sood A K. Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor. Nature Nanotechnology, 2008, 3(4): 210–215

[24] Yu R, Pan C,Wang Z L. High performance of ZnO nanowire protein sensors enhanced by the piezotronic effect. Energy & Environmental Science, 2013, 6(2): 494

[25] Fu X W, Liao Z M, Zhou Y B, Wu H C, Bie Y Q, Xu J, Yu D P. Graphene/ZnO nanowire/graphene vertical structure based fastresponse ultraviolet photodetector. Applied Physics Letters, 2012, 100(22): 223114

[26] í ek J, Valenta J, Hru ka P, Melikhova O, Procházka I, Novotny M, Bulí J. Origin of green luminescence in hydrothermally grown ZnO single crystals. Applied Physics Letters, 2015, 106(25): 251902

[27] Liu R, You X C, Fu X W, Lin F, Meng J, Yu D P, Liao Z M. Gate modulation of graphene-ZnO nanowire Schottky diode. Scientific Reports, 2015, 5: 10125

Zhiqian WU, Yue SHEN, Xiaoqiang LI, Qing YANG, Shisheng LIN. Green light-emitting diode based on graphene-ZnO nanowire van der Waals heterostructure[J]. Frontiers of Optoelectronics, 2016, 9(1): 87. Zhiqian WU, Yue SHEN, Xiaoqiang LI, Qing YANG, Shisheng LIN. Green light-emitting diode based on graphene-ZnO nanowire van der Waals heterostructure[J]. Frontiers of Optoelectronics, 2016, 9(1): 87.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!