激光与光电子学进展, 2017, 54 (4): 041901, 网络出版: 2017-04-19   

非周期极化铌酸锂晶体宽带倍频的理论研究 下载: 762次

Theoretical Study on Broadband Frequency Doubling in Aperiodically Poled Lithium Niobate Crystal
作者单位
南京邮电大学光电工程学院先进光子技术实验室, 江苏 南京 210023
摘要
宽带准相位匹配(QPM)在多波长和超短脉冲倍频等领域有着广泛应用。分析了铌酸锂晶体的准相位匹配和群速度匹配条件,利用遗传算法,对非周期极化铌酸锂(APPLN)晶体的结构进行优化设计,并提出了一种通过适当调整基波的位置和数量来优化非周期极化铌酸锂晶体倍频带宽的设计方法。研究表明,对于0型(e+e→e)准相位匹配,在群速度匹配点附近,周期极化铌酸锂(PPLN)晶体倍频带宽为167 nm,而非周期极化铌酸锂晶体最大倍频带宽可达440 nm,带宽增加了273 nm;I型(o+o→e)准相位匹配下,周期极化铌酸锂晶体在群速度匹配点附近的倍频带宽为59 nm,而非周期极化铌酸锂晶体最大倍频带宽可达153 nm,带宽增加了94 nm。
Abstract
Broadband quasi-phase-matching (QPM) is widely used in many fields, such as multi-wavelength and ultrashort pulse frequency doubling. The conditions of QPM and group velocity matching in lithium niobate crystal are analyzed. The optimized structure of aperiodically poled lithium niobate (APPLN) crystal is designed by genetic algorithm. Also, we present a method of optimizing the APPLN crystal second-harmonic generation (SHG) bandwidth by appropriately adjusting the position and quantity of the fundamental wavelengths. The results show that for QPM of type 0 (e+e→e) near the group velocity matching points, the SHG bandwidth in periodically poled lithium niobate (PPLN) crystal is about 167 nm, while the maximum SHG bandwidth in APPLN is up to 440 nm, and the bandwidth increases by 273 nm. For QPM of type I (o+o→e) near the group velocity matching points, the SHG bandwidth in PPLN is about 59 nm, while the maximum SHG bandwidth in APPLN is up to 153 nm, and the bandwidth increases by 94 nm.
参考文献

[1] Chen B Q, Zhang C, Hu C Y, et al. High-efficiency broadband high-harmonic generation from a single quasi-phase-matching nonlinear crystal[J]. Phys Rev Lett, 2015, 115(8): 083902.

[2] Zhang L Y, Liu Y J, Huang J J, et al. Second harmonic generation of ultrashort pulses in refractive-index-linear-modulating nonlinear crystals[J]. J Opt Soc Am B, 2014, 31(5): 1202-1210.

[3] 温 馨, 韩亚帅, 何 军, 等. PPKTP晶体半整体谐振腔倍频的397.5 nm紫外激光输出[J]. 光学学报, 2016, 36(4): 0414001.

    Wen Xin, Han Yashuai, He Jun, et al. Generation of 397.5 nm ultra-violet laser by frequency doubling in a PPKTP-crystal semi-monolithic resonant cavity[J]. Acta Optica Sinica, 2016, 36(4): 0414001.

[4] 杨 盛, 黄小军, 吴朝辉, 等. BBO晶体用于掺铒光纤锁模激光宽带倍频的研究[J]. 激光与光电子学进展, 2015, 52(12): 121901.

    Yang Sheng, Huang Xiaojun, Wu Zhaohui, et al. Broadband frequency doubling of Er-fiber mode-locked laser in BBO crystal[J]. Laser & Optoelectronics Progress, 2015, 52(12): 121901.

[5] 李慧娟, 张 淼, 李凤琴. 高功率单频LBO腔内倍频461 nm钛宝石激光器[J]. 中国激光, 2016, 43(3): 0302003.

    Li Huijuan, Zhang Miao, Li Fengqin. High-power single-frequency 461 nm generation from an intracavity doubling of Ti: sapphire laser with LBO[J]. Chinese J Lasers, 2016, 43(3): 0302003.

[6] Cardoso L, Pires H, Figueira G. Increased bandwidth optical parametric amplification of supercontinuum pulses with angular dispersion[J]. Opt Lett, 2009, 34(9): 1369-1371.

[7] 张 新, 张恒利, 毛叶飞, 等. 高效短脉冲宽带倍频绿光实现方法[J]. 中国激光, 2016, 43(2): 0202003.

    Zhang Xin, Zhang Hengli, Mao Yefei, et al. Efficient methods of green output by second harmonic generation with short pulse broad-band laser[J]. Chinese J Lasers, 2016, 43(2): 0202003.

[8] Kumar S C, Samanta G K, Devi K, et al. High-efficiency, multicrystal, single-pass, continuous-wave second harmonic generation[J]. Opt Express, 2011, 19(12): 11152-11169.

[9] 邓青华, 张小民, 丁 磊, 等. 应用级联倍频方法提高倍频系统输出稳定性研究[J]. 物理学报, 2011, 60(2): 024213.

    Deng Qinghua, Zhang Xiaomin, Ding Lei, et al. Stabilizing second harmonic generation output using cascaded crystals[J]. Acta Physica Sinica, 2011, 60(2): 024213.

[10] 韩 伟, 郑万国, 杨义胜, 等. 啁啾补偿的折返点匹配二倍频[J]. 光学学报, 2007, 27(1): 133-137.

    Han Wei, Zheng Wanguo, Yang Yisheng, et al. Second-harmonic generation at retracing point of phase matching with pre-chirp compensation[J]. Acta Optica Sinica, 2007, 27(1): 133-137.

[11] Lee K J, Yoon C S, Rotermund F. Analysis of possible group-velocity-matched broadband second-harmonic generation in various periodically poled nonlinear crystals[J]. Jap J Appl Phys, 2005, 44(3): 1264-1268.

[12] Zhang J F, Chen Y P, Lu F, et al. Effect of MgO doping of periodically poled lithium niobate on second-harmonic generation of femtosecond laser pulses[J]. Appl Opt, 2007, 46(32): 7792-7796.

[13] Yu N E, Ro J H, Cha M, et al. Broadband quasi-phase-matched second-harmonic generation in MgO-doped periodically poled LiNbO3 at the communications band[J]. Opt Lett, 2002, 27(12): 1046-1048.

[14] Dang W R, Chen Y P, Chen X F. Performance enhancement for ultrashort-pulse wavelength conversion by using an aperiodic domain-inverted optical superlattice[J]. Photon Technol Lett, 2012, 24(5): 347-349.

[15] Bostani A, Ahlawat M, Tehranchi A, et al. Design, fabrication and characterization of a specially apodized chirped grating for reciprocal second harmonic generation[J]. Opt Express, 2015, 23(4): 5183-5189.

[16] Kong Y, Chen X F, Xia Y X. Optimized second harmonic generation of femtosecond pulse by phase-blanking effect in aperiodically optical superlattice[J]. Chinese Phys Lett, 2008, 25(4): 1297-1300.

[17] 张远涛, 屈求智, 钱 军, 等. PPLN晶体1560 nm激光倍频过程的热效应分析[J]. 中国激光, 2015, 42(7): 0708002.

    Zhang Yuantao, Qu Qiuzhi, Qian Jun, et al. Thermal effect analysis of 1560 nm laser frequency doubling in a PPLN crystal[J]. Chinese J Lasers, 2015, 42(7): 0708002.

[18] Jiang J, Chang J H, Feng S J, et al. Mid-IR multiwavelength difference frequency generation based on fiber lasers[J]. Opt Express, 2010, 18(5): 4740-4747.

[19] Prakash O, Lim H-H, Kim B-J, et al. Collinear broadband optical parametric generation in periodically poled lithium niobate crystals by group velocity matching[J]. Appl Phys B, 2008, 92(4): 535-541.

[20] Chen X F, Wu F, Zeng X L, et al. Multiple quasi-phase-matching in a nonperiodic domain-inverted optical superlattice[J]. Phys Rev A, 2004, 69(1): 013818.

[21] Lu M, Chen X F, Chen Y P, et al. Algorithm to design aperiodic optical superlattice for multiple quasi-phase matching[J]. Appl Opt, 2007, 46(19): 4138-4143.

[22] Edwards G J, Lawrence M. A temperature-dependent dispersion equation for congruently grown lithium niobate[J]. Opt Quant Elect, 1984, 16(4): 373-375.

[23] 雷英杰, 张善文, 李续武, 等. Matlab遗传算法工具箱及应用[M]. 西安: 西安电子科技大学出版社, 2005: 1-105.

    Lei Yingjie, Zhang Shanwen, Li Xuwu, et al. Matlab genetic algorithm toolbox and its application[M]. Xi′an: Xidian University Press, 2005: 1-105.

蒋建, 张建东, 王凯, 肖璇, 张祖兴. 非周期极化铌酸锂晶体宽带倍频的理论研究[J]. 激光与光电子学进展, 2017, 54(4): 041901. Jiang Jian, Zhang Jiandong, Wang Kai, Xiao Xuan, Zhang Zuxing. Theoretical Study on Broadband Frequency Doubling in Aperiodically Poled Lithium Niobate Crystal[J]. Laser & Optoelectronics Progress, 2017, 54(4): 041901.

本文已被 2 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!