激光与光电子学进展, 2020, 57 (10): 100002, 网络出版: 2020-05-08   

多波长数字全息计量技术综述 下载: 1363次

Review of Multi-Wavelength Digital Holography Metrology
作者单位
上海交通大学电子信息与电气工程学院, 上海 200240
引用该论文

张悦萌, 蔡萍, 隆军, 闫浩. 多波长数字全息计量技术综述[J]. 激光与光电子学进展, 2020, 57(10): 100002.

Yuemeng Zhang, Ping Cai, Jun Long, Hao Yan. Review of Multi-Wavelength Digital Holography Metrology[J]. Laser & Optoelectronics Progress, 2020, 57(10): 100002.

参考文献

[1] Cuche E, Bevilacqua F, Depeursinge C. Digital holography for quantitative phase-contrast imaging[J]. Optics Letters, 1999, 24(5): 291-293.

[2] Marquet P, Rappaz B, Magistretti P J, et al. Digital holographic microscopy: a noninvasive contrast imaging technique allowing quantitative visualization of living cells with subwavelength axial accuracy[J]. Optics Letters, 2005, 30(5): 468-470.

[3] Guo R L, Zhang W G, Liu R, et al. Phase unwrapping in dual-wavelength digital holographic microscopy with total variation regularization[J]. Optics Letters, 2018, 43(14): 3449-3452.

[4] Forrester A T, Parkins W E, Gerjuoy E. On the possibility of observing beat frequencies between lines in the visible spectrum[J]. Physical Review, 1947, 72(8): 728.

[5] Gass J, Dakoff A, Kim M K. Phase imaging without 2π ambiguity by multiwavelength digital holography[J]. Optics Letters, 2003, 28(13): 1141-1143.

[6] Mann C J, Bingham P R, Paquit V C, et al. Quantitative phase imaging by three-wavelength digital holography[J]. Optics Express, 2008, 16(13): 9753-9764.

[7] Wada A, Kato M, Ishii Y. Large step-height measurements using multiple-wavelength holographic interferometry with tunable laser diodes[J]. Journal of the Optical Society of America A, 2008, 25(12): 3013-3020.

[8] Khmaladze A, Matz R L, Zhang C, et al. Dual-wavelength linear regression phase unwrapping in three-dimensional microscopic images of cancer cells[J]. Optics Letters, 2011, 36(6): 912-914.

[9] Li Y, Xiao W, Pan F. Multiple-wavelength-scanning-based phase unwrapping method for digital holographic microscopy[J]. Applied Optics, 2014, 53(5): 979-987.

[10] Zhang T, Unger K, Maire G, et al. Multi-wavelength multi-angle reflection tomography[J]. Optics Express, 2018, 26(20): 26093-26105.

[11] Hosseini P, Jin D, Yaqoob Z, et al. Single-shot dual-wavelength interferometric microscopy[J]. Methods, 2018, 136: 35-39.

[12] Pan F, Yang L Z, Xiao W. Coherent noise reduction in digital holographic microscopy by averaging multiple holograms recorded with a multimode laser[J]. Optics Express, 2017, 25(18): 21815-21825.

[13] Nomura T, Okamura M, Nitanai E, et al. Image quality improvement of digital holography by superposition of reconstructed images obtained by multiple wavelengths[J]. Applied Optics, 2008, 47(19): 38-43.

[14] Di JL, Qu WJ, Wu BJ, et al. Dual wavelength digital holography for improving the measurement accuracy[C]. International Conference on Optics in Precision Engineering & Nanotechnology, 2013.

[15] Carl D, Fratz M, Pfeifer M, et al. Multiwavelength digital holography with autocalibration of phase shifts and artificial wavelengths[J]. Applied Optics, 2009, 48(34): H1-H8.

[16] FratzM, CarlD. Novel industry ready sensors for shape measurement based on multi wavelength digital holography[M] ∥Fringe 2013. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014: 479- 484.

[17] SchillerA, BeckmannT, FratzM, et al. Digital holography on moving objects: multiwavelength height measurements on inclined surfaces[C]. Society of Photo-optical Instrumentation Engineers, 2017.

[18] Seyler T, Fratz M, Beckmann T, et al. Extending the depth of field beyond geometrical imaging limitations using phase noise as a focus measure in multiwavelength digital holography[J]. Applied Sciences, 2018, 8(7): 1042.

[19] Schnars U, Jüptner W. Direct recording of holograms by a CCD target and numerical reconstruction[J]. Applied Optics, 1994, 33(2): 179-181.

[20] Takeda M, Ina H, Kobayashi S. Fourier-transform method of fringe-pattern analysis for computer-based topography and interferometry[J]. Journal of the Optical Society of America, 1982, 72(1): 156-160.

[21] Cuche E, Marquet P, Depeursinge C. Spatial filtering for zero-order and twin-image elimination in digital off-axis holography[J]. Applied Optics, 2000, 39(23): 4070-4075.

[22] Wada A, Kato M, Ishii Y. Multiple-wavelength digital holographic interferometry using tunable laser diodes[J]. Applied Optics, 2008, 47(12): 2053-2060.

[23] Colomb T, Krivec S, Hutter H, et al. Digital holographic reflectometry[J]. Optics Express, 2010, 18(4): 3719-3731.

[24] Di J L, Zhang J W, Xi T L, et al. Improvement of measurement accuracy in digital holographic microscopy by using dual-wavelength technique[J]. Nanolithography, MEMS, and MOEMS, 2015, 14(4): 041313.

[25] Kühn J, Colomb T, Montfort F, et al. Real-time dual-wavelength digital holographic microscopy with a single hologram acquisition[J]. Optics Express, 2007, 15(12): 7231-7242.

[26] Tahara T, Gotohda T, Akamatsu T, et al. High-speed image-reconstruction algorithm for a spatially multiplexed image and application to digital holography[J]. Optics Letters, 2018, 43(12): 2937-2940.

[27] Turko N A, Eravuchira P J, Barnea I, et al. Simultaneous three-wavelength unwrapping using external digital holographic multiplexing module[J]. Optics Letters, 2018, 43(9): 1943-1946.

[28] Tahara T, Kaku T, Arai Y. Digital holography based on multiwavelength spatial-bandwidth-extended capturing-technique using a reference arm (Multi-SPECTRA)[J]. Optics Express, 2014, 22(24): 29594-29610.

[29] Abdelsalam D G, Magnusson R, Kim D. Single-shot, dual-wavelength digital holography based on polarizing separation[J]. Applied Optics, 2011, 50(19): 3360-3368.

[30] 寇云莉, 李恩普, 邸江磊, 等. 利用双波长数字全息术测量微小物体表面形貌[J]. 中国激光, 2014, 41(2): 0209010.

    Kou Y L, Li E P, Di J L, et al. Surface morphology measurement of tiny object based on dual-wavelength digital holography[J]. Chinese Journal of Lasers, 2014, 41(2): 0209010.

[31] Guo R L, Wang F. Compact and stable real-time dual-wavelength digital holographic microscopy with a long-working distance objective[J]. Optics Express, 2017, 25(20): 24512-24520.

[32] Liu L, Shan M G, Zhong Z, et al. Simultaneous dual-wavelength off-axis flipping digital holography[J]. Optics Letters, 2017, 42(21): 4331-4334.

[33] Tayebi B, Han J H, Sharif F, et al. Compact single-shot four-wavelength quantitative phase microscopy with polarization- and frequency-division demultiplexing[J]. Optics Express, 2017, 25(17): 20172-20182.

[34] Liu G, Scott P D. Phase retrieval and twin-image elimination for in-line Fresnel holograms[J]. Journal of the Optical Society of America A, 1987, 4(1): 159-165.

[35] Yamaguchi I, Zhang T. Phase-shifting digital holography[J]. Optics Letters, 1997, 22(16): 1268-1270.

[36] Meng X F, Cai L Z, Xu X F, et al. Two-step phase-shifting interferometry and its application in image encryption[J]. Optics Letters, 2006, 31(10): 1414-1416.

[37] Shaked N T, Zhu Y Z, Rinehart M T, et al. Two-step-only phase-shifting interferometry with optimized detector bandwidth for microscopy of live cells[J]. Optics Express, 2009, 17(18): 15585-15591.

[38] Awatsuji Y, Sasada M, Kubota T. Parallel quasi-phase-shifting digital holography[J]. Applied Physics Letters, 2004, 85(6): 1069-1071.

[39] Cai L Z, Liu Q, Yang X L. Generalized phase-shifting interferometry with arbitrary unknown phase steps for diffraction objects[J]. Optics Letters, 2004, 29(2): 183-185.

[40] Abdelsalam D G, Kim D. Two-wavelength in-line phase-shifting interferometry based on polarizing separation for accurate surface profiling[J]. Applied Optics, 2011, 50(33): 6153-6161.

[41] Barada D, Kiire T, Sugisaka J I, et al. Simultaneous two-wavelength Doppler phase-shifting digital holography[J]. Applied Optics, 2011, 50(34): H237-H244.

[42] Xiong J X, Zhong L Y, Liu S D, et al. Improved phase retrieval method of dual-wavelength interferometry based on a shorter synthetic-wavelength[J]. Optics Express, 2017, 25(7): 7181-7191.

[43] Zhang W P, Lu X X, Fei L H, et al. Simultaneous phase-shifting dual-wavelength interferometry based on two-step demodulation algorithm[J]. Optics Letters, 2014, 39(18): 5375-5378.

[44] Fei L H, Lu X X, Wang H L, et al. Single-wavelength phase retrieval method from simultaneous multi-wavelength in-line phase-shifting interferograms[J]. Optics Express, 2014, 22(25): 30910-30923.

[45] Zhang W P, Lu X X, Luo C S, et al. Principal component analysis based simultaneous dual-wavelength phase-shifting interferometry[J]. Optics Communications, 2015, 341: 276-283.

[46] Qiu X, Zhong L Y, Xiong J X, et al. Phase retrieval based on temporal and spatial hybrid matching in simultaneous phase-shifting dual-wavelength interferometry[J]. Optics Express, 2016, 24(12): 12776-12787.

[47] Li J S, Lu X X, Xu X F, et al. Simultaneous phase-shifting dual-wavelength interferometry based on independent component analysis[J]. Applied Optics, 2017, 56(13): 3673-3678.

[48] Servin M, Padilla M, Garnica G. Synthesis of multi-wavelength temporal phase-shifting algorithms optimized for high signal-to-noise ratio and high detuning robustness using the frequency transfer function[J]. Optics Express, 2016, 24(9): 9766-9780.

[49] Lee Y, Ito Y, Tahara T, et al. Single-shot dual-wavelength phase unwrapping in parallel phase-shifting digital holography[J]. Optics Letters, 2014, 39(8): 2374-2377.

[50] Safrani A, Abdulhalim I. High-speed 3D imaging using two-wavelength parallel-phase-shift interferometry[J]. Optics Letters, 2015, 40(20): 4651-4654.

[51] Ney M, Safrani A, Abdulhalim I. Three wavelengths parallel phase-shift interferometry for real-time focus tracking and vibration measurement[J]. Optics Letters, 2017, 42(4): 719-722.

[52] Kumar U P, Mohan N K, Kothiyal M P. Red-green-blue wavelength interferometry and TV holography for surface metrology[J]. Journal of Optics, 2011, 40(4): 176-183.

[53] Desse J M, Picart P, Tankam P. Sensor influence in digital 3λ holographic interferometry[J]. Measurement Science and Technology, 2011, 22(6): 064005.

[54] Pförtner A, Schwider J. Red-green-blue interferometer for the metrology of discontinuous structures[J]. Applied Optics, 2003, 42(4): 667-673.

[55] 赵晖, 曾凡创, 钟丽云, 等. 基于彩色CMOS双波长数字全息显微术的细胞相位定量测量[J]. 激光与光电子学进展, 2015, 52(7): 070901.

    Zhao H, Zeng F C, Zhong L Y, et al. Quantitative measurement of cell phase using dual-wavelength digital holographic microscopy with color CMOS[J]. Laser & Optoelectronics Progress, 2015, 52(7): 070901.

[56] Tian X B, Tu X Z, Zhang J C, et al. Snapshot multi-wavelength interference microscope[J]. Optics Express, 2018, 26(14): 18279-18291.

[57] Rinehart M T, Shaked N T, Jenness N J, et al. Simultaneous two-wavelength transmission quantitative phase microscopy with a color camera[J]. Optics Letters, 2010, 35(15): 2612-2614.

[58] Min J W, Yao B L, Gao P, et al. Dual-wavelength slightly off-axis digital holographic microscopy[J]. Applied Optics, 2012, 51(2): 191-196.

[59] Lue N, Kang J W, Hillman T R, et al. Single-shot quantitative dispersion phase microscopy[J]. Applied Physics Letters, 2012, 101(8): 084101.

[60] Dubois F, Joannes L, Legros J C. Improved three-dimensional imaging with a digital holography microscope with a source of partial spatial coherence[J]. Applied Optics, 1999, 38(34): 7085-7094.

[61] Pedrini G, Schedin S. Short coherence digital holography for 3D microscopy[J]. Optik - International Journal for Light and Electron Optics, 2001, 112(9): 427-432.

[62] Warnasooriya N, Kim M K. LED-based multi-wavelength phase imaging interference microscopy[J]. Optics Express, 2007, 15(15): 9239-9247.

[63] Kemper B, Stürwald S, Remmersmann C, et al. Characterisation of light emitting diodes (LEDs) for application in digital holographic microscopy for inspection of micro and nanostructured surfaces[J]. Optics and Lasers in Engineering, 2008, 46(7): 499-507.

[64] Jeon S, Cho J, Jin J N, et al. Dual-wavelength digital holography with a single low-coherence light source[J]. Optics Express, 2016, 24(16): 18408-18416.

[65] Cho J, Lim J, Jeon S, et al. Dual-wavelength off-axis digital holography using a single light-emitting diode[J]. Optics Express, 2018, 26(2): 2123-2131.

[66] 邓丽军, 黄星艳, 曾吕明, 等. 基于双色LED芯片的双波长像面数字全息显微术[J]. 光学学报, 2018, 38(1): 0111004.

    Deng L J, Huang X Y, Zeng L M, et al. Dual-wavelength image-plane digital holographic microscopy based on bi-color LED chips[J]. Acta Optica Sinica, 2018, 38(1): 0111004.

[67] Yu L F, Cai L L. Iterative algorithm with a constraint condition for numerical reconstruction of a three-dimensional object from its hologram[J]. Journal of the Optical Society of America A, 2001, 18(5): 1033-1045.

[68] Xu L, Mater M, Ni J. Focus detection criterion for refocusing in multi-wavelength digital holography[J]. Optics Express, 2011, 19(16): 14779-14793.

[69] Dohet-Eraly J, Yourassowsky C, Dubois F. Fast numerical autofocus of multispectral complex fields in digital holographic microscopy with a criterion based on the phase in the Fourier domain[J]. Optics Letters, 2016, 41(17): 4071-4074.

[70] Cuche E, Marquet P, Depeursinge C. Simultaneous amplitude-contrast and quantitative phase-contrast microscopy by numerical reconstruction of Fresnel off-axis holograms[J]. Applied Optics, 1999, 38(34): 6994-7001.

[71] Colomb T, Kühn J, Charrière F, et al. Total aberrations compensation in digital holographic microscopy with a reference conjugated hologram[J]. Optics Express, 2006, 14(10): 4300-4306.

[72] Colomb T, Cuche E, Charrière F, et al. Automatic procedure for aberration compensation in digital holographic microscopy and applications to specimen shape compensation[J]. Applied Optics, 2006, 45(5): 851-863.

[73] Colomb T, Montfort F, Kühn J, et al. Numerical parametric lens for shifting, magnification, and complete aberration compensation in digital holographic microscopy[J]. Journal of the Optical Society of America A, 2006, 23(12): 3177-3190.

[74] Ferraro P, de Nicola S, Finizio A, et al. Compensation of the inherent wave front curvature in digital holographic coherent microscopy for quantitative phase-contrast imaging[J]. Applied Optics, 2003, 42(11): 1938-1946.

[75] Stępień P, Korbuszewski D, Kujawińska M. Digital holographic microscopy with extended field of view using tool for generic image stitching[J]. ETRI Journal, 2019, 41(1): 73-83.

[76] Nguyen T, Bui V, Lam V, et al. Automatic phase aberration compensation for digital holographic microscopy based on deep learning background detection[J]. Optics Express, 2017, 25(13): 15043-15057.

[77] Upputuri P K. Measurement of discontinuous surfaces using multiple-wavelengthinterferometry[J]. Optical Engineering, 2009, 48(7): 073603.

[78] Nguyen T, Nehmetallah G, Raub C, et al. Accurate quantitative phase digital holographic microscopy with single- and multiple-wavelength telecentric and nontelecentric configurations[J]. Applied Optics, 2016, 55(21): 5666-5683.

[79] Khodadad D, Bergström P, Hällstig E, et al. Fast and robust automatic calibration for single-shot dual-wavelength digital holography based on speckle displacements[J]. Applied Optics, 2015, 54(16): 5003-5010.

[80] Ferraro P, Grilli S, Miccio L, et al. Full color 3-D imaging by digital holography and removal of chromatic aberrations[J]. Journal of Display Technology, 2008, 4(1): 97-100.

[81] Alfieri D. Coppola G,de Nicola S, et al. Method for superposing reconstructed images from digital holograms of the same object recorded at different distance and wavelength[J]. Optics Communications, 2006, 260(1): 113-116.

[82] Colomb T, Kühn J, Depeursinge C, et al. Several micron-range measurements with sub-nanometric resolution by the use of dual-wavelength digital holography and vertical scanning[J]. Proceedings of SPIE, 2009, 7389: 73891H.

[83] Nadeborn W, Andrä P, Osten W. A robust procedure for absolute phase measurement[J]. Optics and Lasers in Engineering, 1996, 24(2/3): 245-260.

[84] Parshall D, Kim M K. Digital holographic microscopy with dual-wavelength phase unwrapping[J]. Applied Optics, 2006, 45(3): 451-459.

[85] Shan M G, Liu L, Zhong Z, et al. Improved phase reconstruction using linear programming for dual-wavelength digital holography[J]. Optics and Lasers in Engineering, 2019, 117: 1-6.

[86] Rivenson Y, Zhang Y B, Günaydın H, et al. Phase recovery and holographic image reconstruction using deep learning in neural networks[J]. Light: Science & Applications, 2018, 7(2): 17141.

[87] Ren Z B, Xu Z M, Lam E Y. Learning-based nonparametric autofocusing for digital holography[J]. Optica, 2018, 5(4): 337-344.

[88] Wang H, Lyu M. Situ G H. eHoloNet: a learning-based end-to-end approach for in-line digital holographic reconstruction[J]. Optics Express, 2018, 26(18): 22603-22614.

[89] Sawaf F, Groves R M. Phase discontinuity predictions using a machine-learning trained kernel[J]. Applied Optics, 2014, 53(24): 5439-5447.

[90] Spoorthi G E, Gorthi S. Gorthi R K S S. PhaseNet: a deep convolutional neural network for two-dimensional phase unwrapping[J]. IEEE Signal Processing Letters, 2019, 26(1): 54-58.

[91] Zhang J C, Tian X B, Shao J B, et al. Phase unwrapping in optical metrology via denoised and convolutional segmentation networks[J]. Optics Express, 2019, 27(10): 14903-14912.

[92] Wang K Q, Li Y, Qian K M, et al. One-step robust deep learning phase unwrapping[J]. Optics Express, 2019, 27(10): 15100-15115.

张悦萌, 蔡萍, 隆军, 闫浩. 多波长数字全息计量技术综述[J]. 激光与光电子学进展, 2020, 57(10): 100002. Yuemeng Zhang, Ping Cai, Jun Long, Hao Yan. Review of Multi-Wavelength Digital Holography Metrology[J]. Laser & Optoelectronics Progress, 2020, 57(10): 100002.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!