红外与毫米波学报, 2013, 32 (5): 462, 网络出版: 2013-10-23   

悬浮颗粒物和叶绿素普适性生物光学反演模型

Suspended particle matter and chlorophyll-a universal bio-optical retrieval model
作者单位
1 南京师范大学 虚拟地理环境教育部重点实验室, 江苏 南京 210046
2 南京信息工程大学 遥感学院, 江苏 南京 210046
摘要
基于太湖、巢湖、滇池和三峡水库水体组分生物光学特性, 根据辐射传输模型和神经网络优化算法建立悬浮颗粒物和叶绿素浓度优化生物光学反演模型.利用野外实测数据对优化生物光学算法进行检验, 结果表明, 该优化生物光学反演模型在一定程度上可以减少测量噪音对反演精度的影响.反演结果表明, 受悬浮颗粒物和叶绿素生物光学特性时空差异影响, 该优化生物光学反演模型在太湖、巢湖、滇池和山峡反演精度具有一定的差异, 但总体上能够较为准确地反演悬浮颗粒物和叶绿素浓度.其中悬浮颗粒物反演精度(平均绝对误差: MAPE, 均方根误差: RMSE)分别能够达到23%和15.13mg/L(样本数N=228), 叶绿素反演精度(MAPE和RMSE)分别能够达到26%和17.68μg/L(样本数N=228).
Abstract
Based on the bio-optical properties of water constitute in the Taihu, Chaohu, Dianchi lake and Sanxia reservoir, bio-optical retrieval model for the suspended particle matter and chlorophyll-a were established according to the radiance transfer model and genetic optimization algorithm. The measured data in situ was used to test this optimized model. The results indicate that, the model can remove the influence of noise on the final retrieval precision in a certain degree. The retrieval precision of this model in the Taihu, Chaohu, Dianchi lake and Sanxia reservoir is different due to the variation of suspended particle matter and chlorophyll-a bio-optical properties. However, in general, this model can retrieve the concentration of suspended particle matter and chlorophyll-a with a preferable precision. Two parameters, mean absolutely percentage error (MAPE) and root mean square error (RMSE) which represent the retrieval precision of suspended particle matter, can reach to a value of 23% and 15.13mg/L, respectively (the number of sampling points is 228). The retrieval precision of chlorophyll-a (MAPE and RMSE) can reach to 26% and 17.68μg/L, respectively with the same number of sampling points.
参考文献

[1] Binding C E, Bowers D G , Mitchelson-Jacob E G. An algorithm for the retrieval of suspended sediment concentrations in the Irish sea from SeaWiFS ocean colour satellite imagery [J]. International Journal of Remote Sensing, 2003, 24(19): 3791-3806.

[2] Verdin J P, Monitoring water quality in a large western reservoir with Landsat imagery[J]. Photogrammetric Engineering & Remote Sensing, 1985, 51:343-353.

[3] Hrm P , Vepslinen J, Hannonen T, et al Detection of water quality using simulated satellite data and semi-empirical algorithms in Finland[J].The Science of Total Environment, 2001, 268(1-3), 107-121.

[4] Jiao H B , Zha Y , Gao J , et al., Estimation of chlorophyll-a concentration in Lake Tai, China using in situ hyperspectral data[J].International Journal of Remote Sensing, 2006, 27(19): 4267-4276.

[5] Gons H J. Optical teledetection of chlorophyll a in turbid inland waters[J].Environment Science and Technology, 1999, 33(7): 1127-1132.

[6] Koponen S, Pulliainen J, Servomaa H, et al. Analysis on the feasibility of multi-source remote sensing observations for chl-a monitoring[J].The Science of the Total Environment, 2001, 268 (1– 3), 95-106.

[7] Fraser R N. Hyper-spectral remote sensing of turbidity and chlorophyll a among Nebraska Sand Hills lakes[J]. International Journal of Remote Sensing, 1998, 19(8): 1579-1589.

[8] Sun D Y, Li Y M, Wang Q. A unified model or remotely estimating chlorophyll a in Lake Taihu, China, based on SVM and in situ hyperspectral [J].IEEE Transactions on geosciences and remote sensing .2009, 47(8):2957-2965.

[9] LU Heng, LI Xinguo, ZHOU Lianyi. Quantitative estimation of chlorophyll-a concentration in the northern part of Lake Taihu using spectral reflectance[J]. Journal of lake sciences (吕恒, 李新国, 周连义, 江南. 基于反射光谱的太湖北部叶绿素a浓度定量估算.湖泊科学), 2006, 18(4): 349-355.

[10] SUN Deyong LI Yunmei LE Chengfeng, et al. Estimating chlorophyll-a concentration in Lake Taihu in summer by irradiance ratio just beneath water surface [J]. Journal of lake sciences (孙德勇, 李云梅, 乐成峰等. 应用水表面下辐照度比估测太湖夏季水体叶绿素a浓度.湖泊科学), 2007, 19(6): 744-752.

[11] Gitelson A A. The peak near 700 nm on radiance spectra of algae and water: relationships of its magnitude and position with chlorophyll concentration[J].International Journal of Remote Sensing, 1992, 13: 3367-3373.

[12] SHU Xiao-zhou, YIN Qiu, KUANG Ding-bo. Relationship between Algal Chlorophyll Concentration and Spectral Reflectance of Inland Water[J]. Journal of remote sensing (疏小舟, 尹 球, 匡定波. 内陆水体藻类叶绿素浓度与反射光谱特征的关系.遥感学报), 2000, 4(1): 41-45.

[13] SONG qingjun, MA ronghua, TANG junwu, et al. Models of estimated total suspend matter concentration base on hyper-spectrum in Lake Taihu, in autumn[J]. Journal of lake sciences (宋庆君, 马荣华, 唐军武等.秋季太湖悬浮物高光谱估算模型.湖泊科学), 2008, 20(2): 196-202.

[14] Dall’Olmo G, Gitelson A. Effect of bio-optical parameter variability on the remote estimation of chlorophyll a concentration in turbid productive waters: experimental results[J].Applied Optics, 2005, 44(3): 412-422.

[15] Gitelson A A, Schalles J F, Hladik C M. Remote chlorophyll-retrieval in turbid, productive estuaries: Cheapeake Bay case study[J].Remote Sensing of Environment, 2007, 109: 464-472.

[16] XU Jing-Pin, ZHANG Bai, SONG Kai-Shan, et al. Estimation of chlorophyll-a concentration in lake xinmiao based on a semi-analytical model[J]. Infrared Millimeter Waves (徐京萍, 张柏, 宋开山等. 基于半分析模型的新庙泡叶绿素a浓度反演研究.红外与毫米波学报), 2008, 27(3): 197-201.

[17] Chengfeng Le, Yunmei Li, Yong Zha, et al. A four-band semi-analytical model for estimation chlorophyll a in highly turbid lakes: The case of Taihu Lake, China[J].Remote Sensing of Environment, 113(2009): 1175-1182.

[18] Le Chengfeng, Li Yunmei, Zha Yong, et al. Remote estimation of chlorophyll a in optically complex waters based on optical classification[J].Remote Sensing of Environment, 2011, 115(2): 725-738.

[19] Lee Z P , Carder K L , Robert A A, Deriving inherent optical properties from water color: a multiband quasi-analytical algorithm for optically deep waters[J].Applied Optics, 2002, 41(27):5755-5772.

[20] Hoge F E, Wright C W. Satellite retrieval of inherent optical properties by inversion of an oceanic radiance model: A preliminary algorithm[J].Applied Optics, 1999, 38: 495-504.

[21] Maritorena S, Siegel D A. Optimization of a semianalytical ocean color model for global-scale applications[J]. Applied Optics, 2002, 41: 2705-2714.

[22] HUANG Changchun. Retrieval of water constituents by bio-optical algorithm considering the vertical distribution of suspended particle: a case study in Taihu Lake[D]. PH.D (黄昌春, 顾及颗粒物垂直分布的太湖水体组分生物光学模型反演研究, 南京师范大学), 2011, Nanjing.

[23] TANG junwu, TIAN guoliang, WANG xiaoyong. The Methods of Water Spectra Measurement and Analysis Ⅰ:Above-Water Method[J]. Journal of remote sensing (唐军武, 田国良, 汪小勇等. 水体光谱测量与分析I: 水面以上测量法.遥感学报)2004, 8(1): 37-44.

[24] ZhongPing Lee, Yu-Hwan Ahn, Curtis Mobley, et al. Removal of surface-reflected light for themeasurement of remote-sensing reflectance from an above-surface platform[J]. Optics Express, 2010, 18(25):26314-26324.

[25] Pope R , Fry E. Absorption spectrum (380-700 nm) of pure waters: II. Integrating cavity measurements[J].Applied Optics , 1997, 710-8723.

[26] Goldberg D E. Genetic algorithms in search, optimization and machine learning[M].Reading, MA: Addison-Wesley, 1989.

[27] Davis L . Handbook of genetic algorithms[M].New York: Van Nostrand-Reinhold, 1991.

[28] Whitley D. A Genetic Algorithm Tutorial. Computer Science Department[M].Fort Collins, Colorado State University, 1993.

[29] Zhan H G , Lee Z P. Retrieval of water optical properties for optically deep waters using genetic algorithms[J].IEEE Geoscience and Remote Sensing, 2003, 41: 1123-1128.

[30] Chang C H, C C Liu. Integrating semianalytical and genetic algorithms to retrieve the constituents of water bodies from remote sensing of ocean color[J].Optics Express, 2007, 15(2): 252-265.Ahn Y H , Bricaud A , Morel A. Light backscattering efficiency and related properties of some phytoplankters [J]. Deep-Sea Research, 1992, 39: 1835-1855.

[31] Binding C E , Bowers D G , Mitchelson-Jacob E G. Estimating suspended sediment concentrations from ocean colour measurements in moderately turbid waters; the impact of variable particle scattering properties [J].Remote Sensing of Environment , 2005, 94: 373-383.

[32] Dekker, A. G., Detection of optical water quality parameters for eutrophic waters by high resolution remote sensing [D].Ph.D Thesis in Amsterdam, Netherlands: Vrije University, 1993, 1-240.

[33] LU Heng, Li Xinguo, JIANG Nan. Estimation of Suspended Solids Concentration in Lake Taihu Using Spectral Reflectance and Simulated MERIS[J]. Journal of lake sciences (吕恒, 李新国, 江南. 基于反射光谱和模拟MERIS数据的太湖悬浮物遥感定量模型.湖泊科学), 2005, 17(2): 104-109.

[34] Ritchie J C, CM. Cooper, and J. Yongqing, Using Landsat multispectral scanner data to estimate suspended sediments in Moon Lake, Mississippi[J]. Remote Sensing of Environment, 1987a, 23:65-81.

[35] Ritchie J C, Cooper, CM, Comparison of Landsat MSS pixel array sizes for estimating water quality[J]. Photogrammetric Engineering & Remote Sensing, 1987b, 53:1549-1553.

[36] Vincent R K , Qin, X. M., McKay, R. M., et al. Phycocyanin detection from LANDSAT TM data for mapping cyanobacterial blooms in Lake Erie[J].Remote Sensing of Environment, 2004, 89(3): 381-392.

[37] DUAN Hong-tao, ZHANG Bai, SONG Kai-shan, et al. Hyperspectral Remote Sensing of Chlorophyll-a in the Chagan Lake, China[J]. Chinses journal of environmental science (段洪涛, 张柏, 宋开山等.查干湖叶绿素a浓度高光谱定量模型研究.环境科学), 2006, 27(3): 503-507.

[38] MA Ronghua DAI Jingfang. Chlorophyll-a Concentration Estimation with Field Spectra of Water-body near Meiliang Bayou in Taihu Lake[J]. Journal of remote sensing (马荣华, 戴锦芳. 应用实测光谱估测太湖梅梁附近水体叶绿素浓度.遥感学报), 2005b, 9(1): 78-86.

[39] MA Ronghua DAI Jingfang. Quantitative Estimation of Chlorophyll-a and Total Suspended Matter Concentration with Landsat ETM Based on Field Spectral Features of Lake Taihu[J]. Journal of lake sciences (马荣华, 戴锦芳. 结合Landsat ETM 与实测光谱估测太湖叶绿素及悬浮物含量.湖泊科学), 2005a, 17(2): 97-103.

[40] LI suju, WU qian, WANG xuejun, et al. Correlations Between Reflectance Spectra and Contents of Chlorophyll-a in Chaohu Lake[J]. Journal of lake sciences (李素菊, 吴倩, 王学军等. 巢湖浮游植物叶绿素含量与反射光谱特征的关系.湖泊科学), 2002, 14(3): 228-234.

[41] Schalles, J., Yacobi, Y., Remote detection and seasonal patterns of phycocyanin, carotenoid and chlorophyll pigments in eutrophic waters[J].Archive Hydrobiological Special Issues Advance Limnological, 2000, 55, 153 168.

[42] ZHOU guanhua, YANG yipping, CHEN jun, et al. Inversion of total suspended matter concentration in turbid water based on the characteristic of chlorophyll fluorescence peak[J]. Journal of lake sciences (周冠华, 杨一鹏, 陈军, 李京.基于叶绿素荧光峰特征的浑浊水体悬浮物浓度遥感反演. 湖泊科学), 2009, 21(2): 272-279.

[43] YANG yu, LI yunmei, WANG qiao, et al. Retrieval of Chlorophyll-a Concentration in the Turbid and Eutrophic Taihu Lake[J]. Journal of geo-information sience (杨煜, 李云梅, 王桥等.富营养化的太湖水体叶绿素a浓度模型反演.地球信息科学学报) 2009, 11(5): 597-603.

[44] Simis, S. G. H., Peters, S. W. M., Gons, H. J., Remote sensing of the cyanobacterial pigment phycocyanin in turbid inland water[J]. Limmolography and Oceanography, 2005, 50(1): 237-245.

[45] Simis, S. G. H., Ruiz-Verdú, A., Domíngurz-Gómez, J. A., et al. Influence of phytoplankton pigment composition on remote sensing of cyanobacterial biomass[J].Remote Sensing of Environment, 2007, 106:414-427.

[46] Hunter, P.D., Tyler, A.N., Carvalho, L., Codd, G.A. and Maberly, S.C., Hyperspectral remote sensing of cyanobacterial pigments as indicators for cell populations and toxins in eutrophic lakes[J].Remote Sensing of Environment, 2010, 114 (11), pp. 2705-2718.

[47] Lee Z P , Carder, K. L., Hyperspectral remote sensing for shallow waters: 2. Deriving bottom depths and water properties by optimization[J].Applied Optics, 1999, 38: 3831-3843.

[48] Austin, R. W., Inherent spectral radiance signatures of the ocean surface. Ocean Color Analysis. S. W. Duntley. San Diego, Scripps Inst[J]. Oceanography, 1974, 74(10): 1-20.

[49] Gordon, H. R., Brown, O. B., A semianalytic radiance model of ocean color[J]. Journal of Geophysical Research, 1988, 93(D3): 10909-10924.

[50] Roesler C S , M. J. Perry. In situ phytoplankton absorption, fluorescence emission, and particulate backscattering spectra determined from reflectance[J]. Journal of Geophysical Research, 1995, 100: 13279-13294.

[51] Garver S A, Siegel D . Inherent optical property inversion of ocean color spectra and its biogeochemical interpretation 1. Time series from the Sargasso Sea[J]. Journal of Geophysical Research, 1997, 102: 18607-18625.

[52] Zhang X , Hu L. Estimating scattering of pure water from density fluctuation of the refractive index[J].Optics Express, 2009, 671-1678.

[53] Stramski D , S awomir B , Flatau W J. Optical properties of Asian mineral dust suspended in seawater[J]. Limmolography and Oceanography, 2004, 49(3), 749-755.

[54] HUANG changchun, LI yunmei, SUN deyong, et al. Study on Models for Parameterizing Spectral Absorption Coefficient of Phytoplankton in Taihu Lake [J]. Advances in marine scisence (黄昌春, 李云梅, 孙德勇, 等, 太湖水体浮游植物光谱吸收系数参数化模型研究.海洋科学进展) 2010, 28(1): 64-72.

[55] Wang P , Boss E , Uncertainties of inherent optical properties obtained from semi-analytical inversions of ocean color[J].Applied Optics, 2005, 44(19): 4074-4085.

[56] Salama, M. S , Dekker, A , . Deriving inherent optical properties and associated inversion-uncertainties in the Dutch Lakes. Hydrol[J].Earth System Science, 2009, 13: 1113-1121.

[57] Schmitt, L. M. Theory of genetic algorithms II: models for genetic operators over the string-tensor representation of populations and convergence to global optima for arbitrary fitness function under scaling [J].Theoretical Computer Science, 2004, 310: 181-231.

黄昌春, 李云梅, 王桥, 吕恒, 孙德勇. 悬浮颗粒物和叶绿素普适性生物光学反演模型[J]. 红外与毫米波学报, 2013, 32(5): 462. HUANG Chang-Chun, LI Yun-Mei, WANG Qiao, LV Heng, SUN De-Yong. Suspended particle matter and chlorophyll-a universal bio-optical retrieval model[J]. Journal of Infrared and Millimeter Waves, 2013, 32(5): 462.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!